Menu Close

Evaluate-sinx-x-2-2x-2-dx-




Question Number 131957 by rs4089 last updated on 10/Feb/21
Evaluate  ∫_(−∞) ^∞ ((sinx)/(x^2 +2x+2))dx
Evaluatesinxx2+2x+2dx
Answered by Dwaipayan Shikari last updated on 10/Feb/21
∫_(−∞) ^∞ ((sinx)/((x+1)^2 +1))       x+1=u  =∫_(−∞) ^∞ ((sinu cos1−sin1cosu)/(u^2 +1))du  =cos1∫_(−∞) ^∞ ((sinu)/(u^2 +1))−sin1∫_(−∞) ^∞ ((cosu)/(u^2 +1))du  =0−(π/e)sin(1)=−(π/e)sin(1)
sinx(x+1)2+1x+1=u=sinucos1sin1cosuu2+1du=cos1sinuu2+1sin1cosuu2+1du=0πesin(1)=πesin(1)
Commented by mnjuly1970 last updated on 10/Feb/21
very nice mr payan...
verynicemrpayan
Answered by mathmax by abdo last updated on 10/Feb/21
let f(λ)=∫_(−∞) ^(+∞)  ((sin(λx))/(x^2  +2x+2))dx withλ>0 ⇒f(λ)=Im(∫_(−∞) ^(+∞)  (e^(iλx) /(x^2  +2x+2))dx)  Φ(z)=(e^(iλz) /(z^2  +2z+2))  we have z^2  +2z+2=0⇒(z+1)^2 +1=0 ⇒  (z+1)^2 =−1 ⇒z+1=+^− i ⇒z =−1+^− i si the poles of Φ are   z_1 =−1+i and z_2 =−1−i  ∫_R Φ(z)dz =2iπRes(Φ,z_1 )=2iπ .(e^(iλz_1 ) /(2i)) =π e^(iλ(−1+i))   =π e^(−iλ−λ)  =πe^(−λ) {cos(λ)−isin(λ)} ⇒f(λ)=−πe^(−λ)  sin(λ)  ∫_(−∞) ^(+∞)  ((sinx)/(x^2  +2x+2))dx =f(1)=−(π/e)sin(1)
letf(λ)=+sin(λx)x2+2x+2dxwithλ>0f(λ)=Im(+eiλxx2+2x+2dx)Φ(z)=eiλzz2+2z+2wehavez2+2z+2=0(z+1)2+1=0(z+1)2=1z+1=+iz=1+isithepolesofΦarez1=1+iandz2=1iRΦ(z)dz=2iπRes(Φ,z1)=2iπ.eiλz12i=πeiλ(1+i)=πeiλλ=πeλ{cos(λ)isin(λ)}f(λ)=πeλsin(λ)+sinxx2+2x+2dx=f(1)=πesin(1)

Leave a Reply

Your email address will not be published. Required fields are marked *