Menu Close

Evaluate-tan-d-




Question Number 119 by novrya last updated on 25/Jan/15
Evaluate ∫(√(tan θ)) dθ
Evaluatetanθdθ
Answered by rajabhay last updated on 06/Dec/14
tan θ=t^2   sec^2 θ dθ=2t dt, sec^2 θ=1+t^4   dθ=((2t dt)/(1+t^4 ))  ∫(√(tanθ )) dθ=∫((2t^2 )/(1+t^4 )) dt  =∫ ((t^2 +1)/(1+t^4 ))dt+∫ ((t^2 −1)/(1+t^4 ))dt  =∫ ((1+1/t^2 )/(t^2 +1/t^2 )) dt+∫ ((1−1/t^2 )/(t^2 +1/t^2 ))  =∫ ((1+1/t^2 )/(t^2 +1/t^2 −2+2)) dt+∫ ((1−1/t^2 )/(t^2 +1/t^2 +2−2))  =∫ ((1+1/t^2 )/((t−1/t)^2 +2)) dt+∫ ((1−1/t^2 )/((t+1/t)^2 −2))  t−1/t=u in 1st intergral and t+1/t=v in 2nd  (1+1/t^2 )dt=du, (1−1/t^2 )dt=dv  So the integral now equals  ∫(du/(u^2 +2)) +∫ (dv/(v^2 −2))  =(1/( (√2)))tan^(−1) (u/( (√2)))+(1/(2(√2)))ln ∣((v−(√2))/(v+(√2)))∣+C  =(1/( (√2)))tan^(−1) (1/( (√2)))(t−(1/t))+(1/(2(√2)))ln ∣((t+1/t−(√2))/(t+1/t+(√2)))∣+C  =(1/( (√2)))tan^(−1) (1/( (√2)))(((t^2 −1)/t))+(1/(2(√2)))ln ∣((t^2 +1−t(√2))/(t^2 +1+t(√2)))∣+C  =(1/( (√2)))tan^(−1) (((tan θ−1)/( (√(2tan θ)))))+(1/(2(√2)))ln ∣((tan θ+1−(√(2tanθ)))/(tan θ+1+(√(2tanθ))))∣+C
tanθ=t2sec2θdθ=2tdt,sec2θ=1+t4dθ=2tdt1+t4tanθdθ=2t21+t4dt=t2+11+t4dt+t211+t4dt=1+1/t2t2+1/t2dt+11/t2t2+1/t2=1+1/t2t2+1/t22+2dt+11/t2t2+1/t2+22=1+1/t2(t1/t)2+2dt+11/t2(t+1/t)22t1/t=uin1stintergralandt+1/t=vin2nd(1+1/t2)dt=du,(11/t2)dt=dvSotheintegralnowequalsduu2+2+dvv22=12tan1u2+122lnv2v+2+C=12tan112(t1t)+122lnt+1/t2t+1/t+2+C=12tan112(t21t)+122lnt2+1t2t2+1+t2+C=12tan1(tanθ12tanθ)+122lntanθ+12tanθtanθ+1+2tanθ+C
Commented by malwaan last updated on 07/Sep/16
greet
greet
Commented by rajabhay last updated on 25/Sep/16
Thanks
Thanks
Commented by peter frank last updated on 05/Jan/22
thanks
thanks