Menu Close

Evaluate-the-following-integral-0-n-x-1-x-dx-n-N-Here-x-is-the-integer-part-of-x-e-g-0-12-0-5-896-5-




Question Number 1444 by 112358 last updated on 04/Aug/15
Evaluate the following integral.                   ∫_0 ^( n) ⌊x⌋^(1/⌊x⌋!) dx       (n∈N)  Here ⌊x⌋ is the integer−part of x  e.g ⌊0.12⌋=0, ⌊5.896⌋=5
Evaluatethefollowingintegral.0nx1/x!dx(nN)Herexistheintegerpartofxe.g0.12=0,5.896=5
Answered by 123456 last updated on 05/Aug/15
f(x)=⌊x⌋^(1/⌊x⌋!) ≡n^(1/n!) ,x=n+r,x∈R_+ ,n∈N,r∈[0,1)  I_n =∫_0 ^n ⌊x⌋^(1/⌊x⌋!) dx  I_0 =0  I_n =∫_0 ^n ⌊x⌋^(1/⌊x⌋!) dx=Σ_(i=0) ^(n−1) ∫_i ^(i+1) i^(1/i!) dx                                   =Σ_(i=0) ^(n−1) i^(1/i!)
f(x)=x1/x!n1/n!,x=n+r,xR+,nN,r[0,1)In=n0x1/x!dxI0=0In=n0x1/x!dx=n1i=0i+1ii1/i!dx=n1i=0i1/i!
Commented by 123456 last updated on 06/Aug/15
L=lim_(n→+∞)  n^(1/n!) =?  D=lim_(n→+∞)  n^(1/n)   ln D=lim_(n→+∞)  ((ln n)/n)=^(L.H) lim_(n→0)  (1/n)=0  D=1  ln L=lim_(n→+∞)  ((ln n)/(n!))=?  0<n^(1/n!) <n^(1/n)  for largd enought n  0<((ln n)/(n!))<^? ((ln n)/n)  1/n!>0  1<n^(1/n!) <n^(1/n)  for large enought n  L=1
L=limn+n1/n!=?D=limn+n1/nlnD=limn+lnnn=L.Hlimn01n=0D=1lnL=limn+lnnn!=?0<n1/n!<n1/nforlargdenoughtn0<lnnn!<?lnnn1/n!>01<n1/n!<n1/nforlargeenoughtnL=1
Commented by 123456 last updated on 05/Aug/15
lim_(n→+∞)  n^(1/n!) ≠0  Σ_(i=0) ^(+∞) i^(1/i!)  diverge
limn+n1/n!0+i=0i1/i!diverge

Leave a Reply

Your email address will not be published. Required fields are marked *