Menu Close

Evaluate-the-following-integral-I-pi-4-pi-2-cos2x-sin2x-ln-cosx-sinx-dx-




Question Number 1350 by 112358 last updated on 24/Jul/15
Evaluate the following integral:  I=∫_(π/4) ^( π/2) (cos2x+sin2x)ln(cosx+sinx) dx
Evaluatethefollowingintegral:I=π/4π/2(cos2x+sin2x)ln(cosx+sinx)dx
Commented by prakash jain last updated on 25/Jul/15
∫sin 2xln (cos x+sin x)dx  =ln (cos x+sin x)(−((cos 2x)/2))+∫((cos 2x)/2) ∙((cos x−sin x)/(cos x+sin x))dx  ∫((cos 2x)/2) ∙((cos x−sin x)/(cos x+sin x))dx=(1/2)∫(1−sin 2x)dx  =(x/2)+((cos 2x)/4)  From above  ∫sin 2xln (cos x+sin x)dx =          =(x/2)+((cos 2x)/4)−((cos 2x)/2)ln (cos x+sin x)
sin2xln(cosx+sinx)dx=ln(cosx+sinx)(cos2x2)+cos2x2cosxsinxcosx+sinxdxcos2x2cosxsinxcosx+sinxdx=12(1sin2x)dx=x2+cos2x4Fromabovesin2xln(cosx+sinx)dx==x2+cos2x4cos2x2ln(cosx+sinx)
Commented by prakash jain last updated on 25/Jul/15
∫cos 2xln (cos x+sin x)dx  =ln (cos x+sin x)((sin 2x)/2)−∫ ((sin 2x)/2)∙((cos x−sin x)/(cos x+sin x))dx  ∫ ((sin 2x)/2)∙((cos x−sin x)/(cos x+sin x))dx=  (1/2)[sin xcos x−ln (cos x+sin x)
cos2xln(cosx+sinx)dx=ln(cosx+sinx)sin2x2sin2x2cosxsinxcosx+sinxdxsin2x2cosxsinxcosx+sinxdx=12[sinxcosxln(cosx+sinx)
Commented by 112358 last updated on 25/Jul/15
Thanks.
Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *