Menu Close

Evaluate-the-integral-of-x-x-3-2-x-5-2-4-x-7-2-4-6-1-x-2-2-2-x-4-2-2-4-2-x-6-2-2-4-2-6-2-dx-for-0-lt-x-lt-The-answer-is-saying-




Question Number 6132 by sanusihammed last updated on 15/Jun/16
Evaluate the integral of ...    [(x−(x^3 /2)+(x^5 /(2.4))−(x^7 /(2.4.6))+....)(1−(x^2 /2^2 )+(x^4 /(2^2 .4^2 ))−(x^6 /(2^2 .4^2 .6^2 ))+....)]dx    for  0 <  x  <  ∞    The answer is saying  ............  (√e)    How is the answer  (√e)
$${Evaluate}\:{the}\:{integral}\:{of}\:… \\ $$$$ \\ $$$$\left[\left({x}−\frac{{x}^{\mathrm{3}} }{\mathrm{2}}+\frac{{x}^{\mathrm{5}} }{\mathrm{2}.\mathrm{4}}−\frac{{x}^{\mathrm{7}} }{\mathrm{2}.\mathrm{4}.\mathrm{6}}+….\right)\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}^{\mathrm{2}} }+\frac{{x}^{\mathrm{4}} }{\mathrm{2}^{\mathrm{2}} .\mathrm{4}^{\mathrm{2}} }−\frac{{x}^{\mathrm{6}} }{\mathrm{2}^{\mathrm{2}} .\mathrm{4}^{\mathrm{2}} .\mathrm{6}^{\mathrm{2}} }+….\right)\right]{dx} \\ $$$$ \\ $$$${for}\:\:\mathrm{0}\:<\:\:{x}\:\:<\:\:\infty \\ $$$$ \\ $$$${The}\:{answer}\:{is}\:{saying}\:\:…………\:\:\sqrt{{e}} \\ $$$$ \\ $$$${How}\:{is}\:{the}\:{answer}\:\:\sqrt{{e}} \\ $$
Commented by prakash jain last updated on 15/Jun/16
x−(x^3 /2)+(x^5 /(2∙4))=x(1−(x^2 /2)+(x^4 /(2∙4))−+...)  =x(1−((x^2 /2)/(1!))+(((x^2 /2)^2 )/(2!))−(((x^2 /2)^3 )/(3!)))  =xe^(−x^2 /2)   similar you can try evaluating other expression  and integrate.
$${x}−\frac{{x}^{\mathrm{3}} }{\mathrm{2}}+\frac{{x}^{\mathrm{5}} }{\mathrm{2}\centerdot\mathrm{4}}={x}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{4}} }{\mathrm{2}\centerdot\mathrm{4}}−+…\right) \\ $$$$={x}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} /\mathrm{2}}{\mathrm{1}!}+\frac{\left({x}^{\mathrm{2}} /\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{2}!}−\frac{\left({x}^{\mathrm{2}} /\mathrm{2}\right)^{\mathrm{3}} }{\mathrm{3}!}\right) \\ $$$$={xe}^{−{x}^{\mathrm{2}} /\mathrm{2}} \\ $$$$\mathrm{similar}\:\mathrm{you}\:\mathrm{can}\:\mathrm{try}\:\mathrm{evaluating}\:\mathrm{other}\:\mathrm{expression} \\ $$$$\mathrm{and}\:\mathrm{integrate}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *