Evaluate-the-integral-x-x-3-2-x-5-2-4-x-7-2-4-6-1-x-2-2-2-x-4-2-2-4-2-x-6-2-2-4-2-6-2-dx-for-0-lt-x-lt-Please-help- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 5835 by sanusihammed last updated on 31/May/16 Evaluatetheintegral.∫[(x−x32+x52.4−x72.4.6+…)(1−x222+x422.42−x622.42.62+….)]dxfor0<x<∞Pleasehelp Commented by Yozzii last updated on 31/May/16 1(2n−2)!!=12×4×6×8×10×…×(2n−2)=12n−1(1×2×3×4×5×…×(n−1))∴1(2n)!!=12nn!(n⩾0)(2n)!!=2n{(2n−2)!!}∑∞n=0(−1)nx2n+12n(n!)=2∑∞n=0(−1)nx2n+1(2)2n+1n!=x∑∞n=0(−1)nn!(x22)n=x∑∞n=01n!(−x22)n∑∞n=0(−1)nx2n+12n(n!)=xexp(−x22)=−ddx(e−x2/2)−−−−−−−−−−−−−−−−−−−−−−−1−x222+x42242−x6224262+…=∑∞n=0(−1)nx2n(2nn!)2=∑∞n=01(n!)2(−x24)n=∑∞n=0{1n!(−x2)n}{1n!(x2)n}−−−−−−−−−−−−−−−−−−−−−−∴J=∫{xexp(−0.5x2)(∑∞n=0(−1)nx2n(2nn!)2)}dxJ=∑∞n=0[(−1)n(2nn!)2{∫(xe−0.5x2)x2ndx}]=∑∞n=0(−1)n(2nn!)2{−e−0.5x2x2n+2n∫xe−0.5x2x2n−2dx}=∑∞n=0(−1)n(2nn!)2(−x2ne−0.5x2−2nx2n−2e−0.5x2−2n(2n−2)x2n−4e−0.5x2+2n(2n−2)(2n−4)∫x2n−6xe−0.5x2dx)=∑∞n=0(−1)n((2n)!!)2(−e−0.5x2(x2n+2nx2(n−1)+2n(2n−2)x2(n−2)+2n(2n−2)(2n−4)x2(n−3)+….+(2n)!!x2(n−n)))+CJ=∑∞n=0((−1)n+1e−0.5x2((2n)!!)2{∑nk=0x2(n−k)(2n)!!(2(n−k))!!})+CJ=e−0.5x2∑∞n=0((−1)n+1(2n)!!{∑nk=01(2(n−k))!!x2(n−k)})+CJ=−e−0.5x2∑∞n=0(1n!(−x22)n{∑nk=01(n−k)!(x22)n−k})J=−e−0.5x2∑∞n=0∑nk=0{1n!(n−k)!(−x22)n(x22)n−k}J=−e−0.5x2∑∞n=0(1n!(−x22)n)(∑∞k=01(n−k)!(x22)n−k)+C???J=−e−0.5x2e−0.5x2e0.5x2+CJ=−e−0.5x2+CJ∣0∞=−e−0.5x2∣0∞=1. Commented by sanusihammed last updated on 31/May/16 Thankssomuch Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 2-x-2-x-dx-Next Next post: 0-3-56-x-2-6x-5-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.