Menu Close

Evaluate-the-integral-x-x-3-2-x-5-2-4-x-7-2-4-6-1-x-2-2-2-x-4-2-2-4-2-x-6-2-2-4-2-6-2-dx-for-0-lt-x-lt-Please-help-




Question Number 5835 by sanusihammed last updated on 31/May/16
Evaluate the integral.    ∫[(x−(x^3 /2)+(x^5 /(2.4))−(x^7 /(2.4.6))+...)(1−(x^2 /2^2 )+(x^4 /(2^2 .4^2 ))−(x^6 /(2^2 .4^2 .6^2 ))+....)]dx    for    0<x<∞    Please help
Evaluatetheintegral.[(xx32+x52.4x72.4.6+)(1x222+x422.42x622.42.62+.)]dxfor0<x<Pleasehelp
Commented by Yozzii last updated on 31/May/16
(1/((2n−2)!!))=(1/(2×4×6×8×10×...×(2n−2)))  =(1/(2^(n−1) (1×2×3×4×5×...×(n−1))))  ∴(1/((2n)!!))=(1/(2^n n!))    ( n≥0)  (2n)!!=2n{(2n−2)!!}    Σ_(n=0) ^∞ (((−1)^n x^(2n+1) )/(2^n (n!)))=(√2)Σ_(n=0) ^∞ (((−1)^n x^(2n+1) )/(((√2))^(2n+1) n!))  =xΣ_(n=0) ^∞ (((−1)^n )/(n!))((x^2 /2))^n   =xΣ_(n=0) ^∞ (1/(n!))(−(x^2 /2))^n   Σ_(n=0) ^∞ (((−1)^n x^(2n+1) )/(2^n (n!)))=xexp(((−x^2 )/2))=−(d/dx)(e^(−x^2 /2) )  −−−−−−−−−−−−−−−−−−−−−−−  1−(x^2 /2^2 )+(x^4 /(2^2 4^2 ))−(x^6 /(2^2 4^2 6^2 ))+...=Σ_(n=0) ^∞ (((−1)^n x^(2n) )/((2^n n!)^2 ))  =Σ_(n=0) ^∞ (1/((n!)^2 ))(−(x^2 /4))^n =Σ_(n=0) ^∞ {(1/(n!))(((−x)/2))^n }{(1/(n!))((x/2))^n }  −−−−−−−−−−−−−−−−−−−−−−  ∴J=∫{xexp(−0.5x^2 )(Σ_(n=0) ^∞ (((−1)^n x^(2n) )/((2^n n!)^2 )))}dx  J=Σ_(n=0) ^∞ [(((−1)^n )/((2^n n!)^2 )){∫(xe^(−0.5x^2 ) )x^(2n) dx}]  =Σ_(n=0) ^∞ (((−1)^n )/((2^n n!)^2 )){−e^(−0.5x^2 ) x^(2n) +2n∫xe^(−0.5x^2 ) x^(2n−2) dx}  =Σ_(n=0) ^∞ (((−1)^n )/((2^n n!)^2 ))(−x^(2n) e^(−0.5x^2 ) −2nx^(2n−2) e^(−0.5x^2 ) −2n(2n−2)x^(2n−4) e^(−0.5x^2 ) +2n(2n−2)(2n−4)∫x^(2n−6) xe^(−0.5x^2 ) dx)  =Σ_(n=0) ^∞ (((−1)^n )/(((2n)!!)^2 ))(−e^(−0.5x^2 ) (x^(2n) +2nx^(2(n−1)) +2n(2n−2)x^(2(n−2)) +2n(2n−2)(2n−4)x^(2(n−3)) +....+(2n)!!x^(2(n−n)) ))+C  J=Σ_(n=0) ^∞ ((((−1)^(n+1) e^(−0.5x^2 ) )/(((2n)!!)^2 )){Σ_(k=0) ^n x^(2(n−k)) (((2n)!!)/((2(n−k))!!))})+C  J=e^(−0.5x^2 ) Σ_(n=0) ^∞ ((((−1)^(n+1) )/((2n)!!)){Σ_(k=0) ^n (1/((2(n−k))!!))x^(2(n−k)) })+C  J=−e^(−0.5x^2 ) Σ_(n=0) ^∞ ((1/(n!))(((−x^2 )/2))^n {Σ_(k=0) ^n (1/((n−k)!))((x^2 /2))^(n−k) })  J=−e^(−0.5x^2 ) Σ_(n=0) ^∞ Σ_(k=0) ^n {(1/(n!(n−k)!))(((−x^2 )/2))^n ((x^2 /2))^(n−k) }    J=−e^(−0.5x^2 ) Σ_(n=0) ^∞ ((1/(n!))(((−x^2 )/2))^n )(Σ_(k=0) ^∞ (1/((n−k)!))((x^2 /2))^(n−k) )+C  ???  J=−e^(−0.5x^2 ) e^(−0.5x^2 ) e^(0.5x^2 ) +C  J=−e^(−0.5x^2 ) +C  J∣_0 ^∞ =−e^(−0.5x^2 ) ∣_0 ^∞ =1.
1(2n2)!!=12×4×6×8×10××(2n2)=12n1(1×2×3×4×5××(n1))1(2n)!!=12nn!(n0)(2n)!!=2n{(2n2)!!}n=0(1)nx2n+12n(n!)=2n=0(1)nx2n+1(2)2n+1n!=xn=0(1)nn!(x22)n=xn=01n!(x22)nn=0(1)nx2n+12n(n!)=xexp(x22)=ddx(ex2/2)1x222+x42242x6224262+=n=0(1)nx2n(2nn!)2=n=01(n!)2(x24)n=n=0{1n!(x2)n}{1n!(x2)n}J={xexp(0.5x2)(n=0(1)nx2n(2nn!)2)}dxJ=n=0[(1)n(2nn!)2{(xe0.5x2)x2ndx}]=n=0(1)n(2nn!)2{e0.5x2x2n+2nxe0.5x2x2n2dx}=n=0(1)n(2nn!)2(x2ne0.5x22nx2n2e0.5x22n(2n2)x2n4e0.5x2+2n(2n2)(2n4)x2n6xe0.5x2dx)=n=0(1)n((2n)!!)2(e0.5x2(x2n+2nx2(n1)+2n(2n2)x2(n2)+2n(2n2)(2n4)x2(n3)+.+(2n)!!x2(nn)))+CJ=n=0((1)n+1e0.5x2((2n)!!)2{nk=0x2(nk)(2n)!!(2(nk))!!})+CJ=e0.5x2n=0((1)n+1(2n)!!{nk=01(2(nk))!!x2(nk)})+CJ=e0.5x2n=0(1n!(x22)n{nk=01(nk)!(x22)nk})J=e0.5x2n=0nk=0{1n!(nk)!(x22)n(x22)nk}J=e0.5x2n=0(1n!(x22)n)(k=01(nk)!(x22)nk)+C???J=e0.5x2e0.5x2e0.5x2+CJ=e0.5x2+CJ0=e0.5x20=1.
Commented by sanusihammed last updated on 31/May/16
Thanks so much
Thankssomuch

Leave a Reply

Your email address will not be published. Required fields are marked *