Menu Close

Evaluate-x-2-a-2-dx-




Question Number 12098 by Nayon last updated on 13/Apr/17
Evaluate ∫(√(x^2 −a^2 ))dx
Evaluatex2a2dx
Answered by sma3l2996 last updated on 13/Apr/17
A=∫(√(x^2 −a^2 ))dx=a∫(√(((x/a))^2 −1))dx  let u=(x/a)⇒du=(dx/a)  A=a^2 ∫(√(u^2 −1))du  let u=cosh(t)⇒du=sinh(t)dt  sinh(t)du=sinh^2 tdt⇔(√(cosh^2 t−1))du=sinh^2 tdt  (√(u^2 −1))du=sinh^2 tdt  A=a^2 ∫sinh^2 tdt=a^2 ∫((cosh(2t)−1)/2)dt  A=(a^2 /2)(((sinh(2t))/2)−t)+C  A=(a^2 /4)(sinh(2acosh((x/a)))−acosh((x/a)))+C
A=x2a2dx=a(xa)21dxletu=xadu=dxaA=a2u21duletu=cosh(t)du=sinh(t)dtsinh(t)du=sinh2tdtcosh2t1du=sinh2tdtu21du=sinh2tdtA=a2sinh2tdt=a2cosh(2t)12dtA=a22(sinh(2t)2t)+CA=a24(sinh(2acosh(xa))acosh(xa))+C
Commented by Nayon last updated on 13/Apr/17
pls ans without using hyperbolic  trig...
plsanswithoutusinghyperbolictrig
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17
x=ait,dx=aidt,i=(√(−1))  I=∫(√(−a^2 t^2 −a^2 ))aidt=−a^2 ∫(√(t^2 +1))dt=  =−a^2 [t(√(t^2 +1))−∫t((2tdt)/(2(√(t^2 +1))))]=  =−a^2 [t(√(t^2 +1))−∫(((t^2 +1)−1)/( (√(t^2 +1))))dt]=  =−a^2 [t(√(t^2 +1))−∫(√(t^2 +1))dt+∫(dt/( (√(t^2 +1))))]=  −a^2 t(√(t^2 +1))+a^2 ∫(√(t^2 +1))dt−(a^2 /2)ln(t+(√(t^2 +1)))  2I=−a^2 (x/(ai)).((√(x^2 −a^2 ))/(ai))−(a^2 /2)ln((x/(ai))+((√(x^2 −a^2 ))/(ai)))⇒  I=(x/2)(√(x^2 −a^2 ))−(a^2 /4)ln(x+(√(x^2 −a^2 )))+C  .■  (−a^2 ×(1/(ai))×(1/(ai))=1,C=(a^2 /4)ln(ai))
x=ait,dx=aidt,i=1I=a2t2a2aidt=a2t2+1dt==a2[tt2+1t2tdt2t2+1]==a2[tt2+1(t2+1)1t2+1dt]==a2[tt2+1t2+1dt+dtt2+1]=a2tt2+1+a2t2+1dta22ln(t+t2+1)2I=a2xai.x2a2aia22ln(xai+x2a2ai)I=x2x2a2a24ln(x+x2a2)+C.◼(a2×1ai×1ai=1,C=a24ln(ai))

Leave a Reply

Your email address will not be published. Required fields are marked *