Evaluate-x-2-a-2-dx- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 12098 by Nayon last updated on 13/Apr/17 Evaluate∫x2−a2dx Answered by sma3l2996 last updated on 13/Apr/17 A=∫x2−a2dx=a∫(xa)2−1dxletu=xa⇒du=dxaA=a2∫u2−1duletu=cosh(t)⇒du=sinh(t)dtsinh(t)du=sinh2tdt⇔cosh2t−1du=sinh2tdtu2−1du=sinh2tdtA=a2∫sinh2tdt=a2∫cosh(2t)−12dtA=a22(sinh(2t)2−t)+CA=a24(sinh(2acosh(xa))−acosh(xa))+C Commented by Nayon last updated on 13/Apr/17 plsanswithoutusinghyperbolictrig… Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17 x=ait,dx=aidt,i=−1I=∫−a2t2−a2aidt=−a2∫t2+1dt==−a2[tt2+1−∫t2tdt2t2+1]==−a2[tt2+1−∫(t2+1)−1t2+1dt]==−a2[tt2+1−∫t2+1dt+∫dtt2+1]=−a2tt2+1+a2∫t2+1dt−a22ln(t+t2+1)2I=−a2xai.x2−a2ai−a22ln(xai+x2−a2ai)⇒I=x2x2−a2−a24ln(x+x2−a2)+C.(−a2×1ai×1ai=1,C=a24ln(ai)) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-12096Next Next post: Evaluate-0-e-x-ln-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.