Menu Close

evaluation-of-0-1-xln-1-x-1-x-2-dx-solution-I-B-P-1-2-ln-1-x-2-ln-1-x-0-1-1-2-0-1-ln-1-x-2-1-x-dx-1-2-ln-2-2-1-2-




Question Number 136921 by mnjuly1970 last updated on 27/Mar/21
     evaluation of :: 𝛗=∫_0 ^( 1) ((xln(1+x))/(1+x^2 ))dx    solution:      𝛗=^(I.B.P ) [(1/2)ln(1+x^2 )ln(1+x)]_0 ^1 −(1/2){∫_0 ^( 1) ((ln(1+x^2 ))/(1+x))dx=𝚽}        𝛗=(1/2)ln^2 (2)−(1/2) 𝚽 ........✓         𝚽=∫_0 ^( 1) ((ln(1+x^2 ))/(1+x))dx =???           h(a)=∫_0 ^( 1) ((ln(1+ax^2 ))/(1+x))dx          h′(a)=∫_0 ^( 1) (∂/∂_a )(((ln(1+ax^2 ))/(1+x)))dx           h′(a)=∫_0 ^( 1) (x^2 /((1+x)(1+ax^2 )))dx          h′(a)=(1/(1+a))∫_0 ^( 1) (1/(1+x))dx+(1/(1+a))∫_0 ^( 1) (x/(1+ax^2 ))dx−(1/(1+a))∫_0 ^( 1) (1/(1+ax^2 ))dx        =(1/(1+a))ln(2)+(1/2).(1/(a(1+a)))ln(1+a)−((√a)/(a(1+a)))[(tan^(−1) (x(√a) )]_0 ^1           =((ln(2))/(1+a))+(1/2).(1/(a(1+a))) ln(1+a)−((√a)/(a(1+a)))tan^(−1) ((√a) )       ∫_0 ^( 1) h′(a)da=ln^2 (2)+(1/2)∫_0 ^( 1) ((ln(1+a))/a)da−(1/4)ln^2 (2)−((π^2 /(16)))                       =ln^2 (2)+(π^2 /(24))−(1/4)ln^2 (2)−(π^2 /(16))        =(3/4)ln^2 (2)−(π^2 /(48))            ∴  h(1)=𝚽=(3/4)ln^2 (2)−(π^2 /(48))  ..✓        𝛗=(1/2)ln^2 (2)−(3/8)ln^2 (2)+(π^2 /(96))      𝛗=(1/8)ln^2 (2)+(π^2 /(96))
evaluationof::ϕ=01xln(1+x)1+x2dxsolution:ϕ=I.B.P[12ln(1+x2)ln(1+x)]0112{01ln(1+x2)1+xdx=Φ}ϕ=12ln2(2)12Φ..Φ=01ln(1+x2)1+xdx=???h(a)=01ln(1+ax2)1+xdxh(a)=01a(ln(1+ax2)1+x)dxh(a)=01x2(1+x)(1+ax2)dxh(a)=11+a0111+xdx+11+a01x1+ax2dx11+a0111+ax2dx=11+aln(2)+12.1a(1+a)ln(1+a)aa(1+a)[(tan1(xa)]01=ln(2)1+a+12.1a(1+a)ln(1+a)aa(1+a)tan1(a)01h(a)da=ln2(2)+1201ln(1+a)ada14ln2(2)(π216)=ln2(2)+π22414ln2(2)π216=34ln2(2)π248h(1)=Φ=34ln2(2)π248..ϕ=12ln2(2)38ln2(2)+π296ϕ=18ln2(2)+π296
Answered by mathmax by abdo last updated on 27/Mar/21
Φ=∫_0 ^1  ((log(1+x^2 ))/(1+x))dx  =ϕ(1) with ϕ(t)=∫_0 ^1 ((log(1+tx^2 ))/(1+x))  (t>0)  we have ϕ^′ (t)=∫_0 ^1 (x^2 /((x+1)(tx^2 +1)))dx =(1/t)∫_0 ^1  ((tx^2 +1−1)/((x+1)(tx^2 +1)))dx  =(1/t)∫_0 ^1  (dx/(x+1))−(1/t)∫_0 ^1  (dx/((x+1)(tx^2  +1)))  but ∫_0 ^1  (dx/(x+1))=ln2  let decompose F(x)=(1/((x+1)(tx^2 +1)))=(a/(x+1)) +((bx+c)/(tx^2  +1))  a=(1/(t+1)) , lim_(x→∞) xF(x)=0 =a+(b/t) ⇒0=at+b ⇒b=−(t/(t+1))  F(0)=1=a+c ⇒c=1−(1/(t+1))=(t/(t+1)) ⇒  F(x)=(1/((t+1)(x+1)))+((−(t/(t+1))x+(t/(t+1)))/(tx^2  +1))  =(1/(t+1)){(1/(x+1))−((tx−t)/(tx^2  +1))} ⇒∫_0 ^1  F(x)dx=(1/(t+1)){ln2−∫_0 ^1  ((tx−t)/(tx^2  +1))dx} and  ∫_0 ^1  ((tx−t)/(tx^2  +1))dx =(1/2)∫_0 ^1  ((2tx)/(tx^2  +1))dx−∫_0 ^1  (t/(tx^2  +1))dx((√t)x=y)  =(1/2)[ln(tx^2 +1)]_0 ^1  −∫_0 ^(√t)   (t/(y^2  +1))(dy/( (√t)))  =(1/2)ln(t+1)−(√t)arctan((√t)) ⇒  ϕ^′ (t)=((log2)/t)−(1/(t(t+1))){ln2−(1/2)log(t+1)+(√t)arctan((√t))}  =((log2)/t)−((log2)/(t(t+1)))−((log(t+1))/(t(t+1)))−(((√t)arctan((√t)))/(t(t+1)))  =((log2)/t)(1−(1/(t+1)))−...=((log2)/t).(t/(t+1))−((log(t+1))/(t(t+1)))−(((√t)arctan((√t)))/(t(t+1)))  =((log2)/(t+1))−((1/t)−(1/(t+1)))log(t+1)−(((√t)arctan((√t)))/(t(t+1)))  ⇒∫_0 ^1  ϕ^′ (t)dt =log^2 (2)−∫_0 ^1  ((log(t+1))/t)dt+∫_0 ^1  ((log(t+1))/(t+1))dt  −∫_0 ^1  (((√t)arctan((√t)))/(t(t+1)))dt  ∫_0 ^1  ((log(t+1))/t)dt  =[logt.log(t+1)]_0 ^1 −∫_0 ^1  ((logt)/(t+1))dt  =−∫_0 ^1  log(t)Σ_(n=0) ^∞ (−1)^n  t^n  dt=−Σ_(n=0) ^∞ (−1)^n  ∫_0 ^1  t^n  logt dt  U_n =∫_0 ^1  t^n  logt dt =[(t^(n+1) /(n+1))logt]_0 ^1 −(1/(n+1))∫_0 ^1   t^n  dt =−(1/((n+1)^2 ))  ⇒∫_0 ^1  ((log(t+1))/t)dt =Σ_(n=0) ^∞  (((−1)^n )/((n+1)^2 )) =−Σ_(n=1) ^∞  (((−1)^n )/n^2 )  =−(2^(1−2) −1)ξ(2)=−(−(1/2)).(π^2 /6)=(π^2 /(12))  ∫_0 ^1  ((log(t+1))/(t+1))dt =[log^2 (t+1)]_0 ^1 −∫_0 ^1 ((log(t+1))/(t+1))dt ⇒  ∫_0 ^1  ((log(t+1))/(t+1))dt =((ln^2 (2))/2)  J=∫_0 ^1  (((√t) arctan((√t)))/(t(t+1)))dt =_((√t)=y)   ∫_0 ^1  ((yarctany)/(y^2 (y^2 +1)))(2y)dy  =2∫_0 ^1  ((arctan(y))/(y^2  +1))dy =2{ [arctan^2 y]_0 ^1 −∫_0 ^1  ((arctany)/(y^2  +1))}  =2×(π^2 /(16))−2∫(...)dy ⇒4∫_0 ^1  ((arctany)/(y^2  +1))dy =(π^2 /8) ⇒  ∫_0 ^1  ((arctany)/(y^2  +1))dy =(π^2 /(32)) ⇒  Φ =ϕ(1)=log^2 (2)−(π^2 /(12)) +((ln^2 (2))/2)−(π^2 /(16))=(3/2)ln^2 (2)−((4π^2 )/(48))−((3π^2 )/(48))  =(3/2)ln^2 (2)−((7π^2 )/(48)) ??
Φ=01log(1+x2)1+xdx=φ(1)withφ(t)=01log(1+tx2)1+x(t>0)wehaveφ(t)=01x2(x+1)(tx2+1)dx=1t01tx2+11(x+1)(tx2+1)dx=1t01dxx+11t01dx(x+1)(tx2+1)but01dxx+1=ln2letdecomposeF(x)=1(x+1)(tx2+1)=ax+1+bx+ctx2+1a=1t+1,limxxF(x)=0=a+bt0=at+bb=tt+1F(0)=1=a+cc=11t+1=tt+1F(x)=1(t+1)(x+1)+tt+1x+tt+1tx2+1=1t+1{1x+1txttx2+1}01F(x)dx=1t+1{ln201txttx2+1dx}and01txttx2+1dx=12012txtx2+1dx01ttx2+1dx(tx=y)=12[ln(tx2+1)]010tty2+1dyt=12ln(t+1)tarctan(t)φ(t)=log2t1t(t+1){ln212log(t+1)+tarctan(t)}=log2tlog2t(t+1)log(t+1)t(t+1)tarctan(t)t(t+1)=log2t(11t+1)=log2t.tt+1log(t+1)t(t+1)tarctan(t)t(t+1)=log2t+1(1t1t+1)log(t+1)tarctan(t)t(t+1)01φ(t)dt=log2(2)01log(t+1)tdt+01log(t+1)t+1dt01tarctan(t)t(t+1)dt01log(t+1)tdt=[logt.log(t+1)]0101logtt+1dt=01log(t)n=0(1)ntndt=n=0(1)n01tnlogtdtUn=01tnlogtdt=[tn+1n+1logt]011n+101tndt=1(n+1)201log(t+1)tdt=n=0(1)n(n+1)2=n=1(1)nn2=(2121)ξ(2)=(12).π26=π21201log(t+1)t+1dt=[log2(t+1)]0101log(t+1)t+1dt01log(t+1)t+1dt=ln2(2)2J=01tarctan(t)t(t+1)dt=t=y01yarctanyy2(y2+1)(2y)dy=201arctan(y)y2+1dy=2{[arctan2y]0101arctanyy2+1}=2×π2162()dy401arctanyy2+1dy=π2801arctanyy2+1dy=π232Φ=φ(1)=log2(2)π212+ln2(2)2π216=32ln2(2)4π2483π248=32ln2(2)7π248??

Leave a Reply

Your email address will not be published. Required fields are marked *