evaluation-of-0-1-xln-1-x-1-x-2-dx-solution-I-B-P-1-2-ln-1-x-2-ln-1-x-0-1-1-2-0-1-ln-1-x-2-1-x-dx-1-2-ln-2-2-1-2- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 136921 by mnjuly1970 last updated on 27/Mar/21 evaluationof::ϕ=∫01xln(1+x)1+x2dxsolution:ϕ=I.B.P[12ln(1+x2)ln(1+x)]01−12{∫01ln(1+x2)1+xdx=Φ}ϕ=12ln2(2)−12Φ……..✓Φ=∫01ln(1+x2)1+xdx=???h(a)=∫01ln(1+ax2)1+xdxh′(a)=∫01∂∂a(ln(1+ax2)1+x)dxh′(a)=∫01x2(1+x)(1+ax2)dxh′(a)=11+a∫0111+xdx+11+a∫01x1+ax2dx−11+a∫0111+ax2dx=11+aln(2)+12.1a(1+a)ln(1+a)−aa(1+a)[(tan−1(xa)]01=ln(2)1+a+12.1a(1+a)ln(1+a)−aa(1+a)tan−1(a)∫01h′(a)da=ln2(2)+12∫01ln(1+a)ada−14ln2(2)−(π216)=ln2(2)+π224−14ln2(2)−π216=34ln2(2)−π248∴h(1)=Φ=34ln2(2)−π248..✓ϕ=12ln2(2)−38ln2(2)+π296ϕ=18ln2(2)+π296 Answered by mathmax by abdo last updated on 27/Mar/21 Φ=∫01log(1+x2)1+xdx=φ(1)withφ(t)=∫01log(1+tx2)1+x(t>0)wehaveφ′(t)=∫01x2(x+1)(tx2+1)dx=1t∫01tx2+1−1(x+1)(tx2+1)dx=1t∫01dxx+1−1t∫01dx(x+1)(tx2+1)but∫01dxx+1=ln2letdecomposeF(x)=1(x+1)(tx2+1)=ax+1+bx+ctx2+1a=1t+1,limx→∞xF(x)=0=a+bt⇒0=at+b⇒b=−tt+1F(0)=1=a+c⇒c=1−1t+1=tt+1⇒F(x)=1(t+1)(x+1)+−tt+1x+tt+1tx2+1=1t+1{1x+1−tx−ttx2+1}⇒∫01F(x)dx=1t+1{ln2−∫01tx−ttx2+1dx}and∫01tx−ttx2+1dx=12∫012txtx2+1dx−∫01ttx2+1dx(tx=y)=12[ln(tx2+1)]01−∫0tty2+1dyt=12ln(t+1)−tarctan(t)⇒φ′(t)=log2t−1t(t+1){ln2−12log(t+1)+tarctan(t)}=log2t−log2t(t+1)−log(t+1)t(t+1)−tarctan(t)t(t+1)=log2t(1−1t+1)−…=log2t.tt+1−log(t+1)t(t+1)−tarctan(t)t(t+1)=log2t+1−(1t−1t+1)log(t+1)−tarctan(t)t(t+1)⇒∫01φ′(t)dt=log2(2)−∫01log(t+1)tdt+∫01log(t+1)t+1dt−∫01tarctan(t)t(t+1)dt∫01log(t+1)tdt=[logt.log(t+1)]01−∫01logtt+1dt=−∫01log(t)∑n=0∞(−1)ntndt=−∑n=0∞(−1)n∫01tnlogtdtUn=∫01tnlogtdt=[tn+1n+1logt]01−1n+1∫01tndt=−1(n+1)2⇒∫01log(t+1)tdt=∑n=0∞(−1)n(n+1)2=−∑n=1∞(−1)nn2=−(21−2−1)ξ(2)=−(−12).π26=π212∫01log(t+1)t+1dt=[log2(t+1)]01−∫01log(t+1)t+1dt⇒∫01log(t+1)t+1dt=ln2(2)2J=∫01tarctan(t)t(t+1)dt=t=y∫01yarctanyy2(y2+1)(2y)dy=2∫01arctan(y)y2+1dy=2{[arctan2y]01−∫01arctanyy2+1}=2×π216−2∫(…)dy⇒4∫01arctanyy2+1dy=π28⇒∫01arctanyy2+1dy=π232⇒Φ=φ(1)=log2(2)−π212+ln2(2)2−π216=32ln2(2)−4π248−3π248=32ln2(2)−7π248?? Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Solve-simultaneously-2x-y-z-8-i-x-2-y-2-2z-2-14-ii-3x-3-4y-3-z-3-195-iii-Please-help-Thanks-Next Next post: Question-136930 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.