Menu Close

evalute-the-value-of-m-2-5-m-4-




Question Number 9279 by j.masanja06@gmail.com last updated on 28/Nov/16
evalute the value of   Σ_(m=2 ) ^5 m^4
evalutethevalueof5m=2m4
Answered by mrW last updated on 28/Nov/16
please refer to Q9232 and Q9265.
pleaserefertoQ9232andQ9265.
Answered by geovane10math last updated on 28/Nov/16
2^4  + 3^4  + 4^4  + 5^4  + 6^4  =   2^4  = 16  3^4  = 81  4^4  = 256  5^4  = 625  6^4  = 1296  16 + 81 + 256 + 625 + 1296 =   = 97 + 881 + 1296 = 1296 + 978 =   2274
24+34+44+54+64=24=1634=8144=25654=62564=129616+81+256+625+1296==97+881+1296=1296+978=2274
Answered by mrW last updated on 28/Nov/16
generally for 1≤m≤n  Σ_(k=1) ^n k^4 =((n(n+1)(2n+1)(3n^2 +3n−1))/(30))  Σ_(k=1) ^(m−1) k^4 =(((m−1)m(2m−1)(3m^2 −3m−1))/(30))  Σ_(k=m) ^n k^4 =Σ_(k=1) ^n k^4 −Σ_(k=1) ^(m−1) k^4   Σ_(k=m) ^n k^4 =((n(n+1)(2n+1)(3n^2 +3n−1)−(m−1)m(2m−1)(3m^2 −3m−1))/(30))  Σ_(k=2) ^5 k^4 =((5×6×11×(3×5^2 +3×5−1)−1×2×3×(3×2^2 −3×2−1))/(30))  =((5×6×11×89−6×5)/(30))=978  or  2^4 +3^4 +4^4 +5^4 =16+81+256+625=978
generallyfor1mnnk=1k4=n(n+1)(2n+1)(3n2+3n1)30m1k=1k4=(m1)m(2m1)(3m23m1)30nk=mk4=nk=1k4m1k=1k4nk=mk4=n(n+1)(2n+1)(3n2+3n1)(m1)m(2m1)(3m23m1)305k=2k4=5×6×11×(3×52+3×51)1×2×3×(3×223×21)30=5×6×11×896×530=978or24+34+44+54=16+81+256+625=978

Leave a Reply

Your email address will not be published. Required fields are marked *