Question Number 9658 by tawakalitu last updated on 23/Dec/16

Commented by ridwan balatif last updated on 23/Dec/16

Commented by ridwan balatif last updated on 23/Dec/16

Commented by sandy_suhendra last updated on 23/Dec/16
![I think that is F=Kr^a η^b v^c η=coefficient of viscosity (Pa s) r=radius of the ball (m) v=velocity of the ball (m/s) and [F]=[M][L][T]^(−2) [r]=[L] [η]=[M][L]^(−1) [T]^(−1) [v]=[L][T]^(−1) F=Kr^a η^b v^c [M][L][T]^(−2) =[L]^a {[M]^b [L]^(−b) [T]^(−b) }{[L]^c [T]^(−c) } [M][L][T]^(−2) =[M]^b [L]^(a−b+c) [T]^(−b−c) so b=1 −b−c=−2 ⇒ c=1 a−b+c=1 ⇒ a=1](https://www.tinkutara.com/question/Q9665.png)
Commented by ridwan balatif last updated on 23/Dec/16

Commented by tawakalitu last updated on 23/Dec/16

Answered by ridwan balatif last updated on 23/Dec/16
![dimentional F=kgms^(−2) =[M][L][T]^(−2) r =m =[L] η =Pa.s=kgm^(−1) s^(−1) =[M][L]^(−1) [T]^(−1) ω =rad/s =[T]^(−1) F=k.r^a .η.^b ω^c [M][L][T]^(−2) =([L])^a ([M][L]^(−1) [T]^(−1) )^b ([T]^(−1) )^c [M][L][T]^(−2) =[M]^b [L]^(a−b) [T]^(−b−c) from dimentional [M] we get b=1 from dimentional [L] we get a−b=1 a−1=1 a=2 from dimentional [T] we get −b−c=−2 −1−c=−2 c=1 so, a=2 b=1 c=1 F=kr^2 ηω](https://www.tinkutara.com/question/Q9667.png)
Commented by sandy_suhendra last updated on 23/Dec/16
![I think that is not ω (rad/s) but v=linear velocity (m/s) because the formula must be F=6πrηv and K=6π [Stokes′ Law]](https://www.tinkutara.com/question/Q9669.png)
Commented by ridwan balatif last updated on 23/Dec/16

Commented by tawakalitu last updated on 23/Dec/16
