Menu Close

Experiment-shows-that-the-viscous-force-F-on-a-spherical-body-of-radius-r-moving-with-angular-velocity-n-is-F-Kr-a-n-b-c-Where-K-is-a-dimentionless-constant-using-the-method-of-dimentional-




Question Number 9658 by tawakalitu last updated on 23/Dec/16
Experiment shows that the viscous force, F  on a spherical body of radius, r moving with  angular velocity, n is, F = Kr^a n^b ω^c .  Where K is a dimentionless constant.  using the method of dimentional analysis,  determine the values of a, b and c
Experimentshowsthattheviscousforce,Fonasphericalbodyofradius,rmovingwithangularvelocity,nis,F=Kranbωc.WhereKisadimentionlessconstant.usingthemethodofdimentionalanalysis,determinethevaluesofa,bandc
Commented by ridwan balatif last updated on 23/Dec/16
what is ω in that question?  is that a mass?
whatisωinthatquestion?isthatamass?
Commented by ridwan balatif last updated on 23/Dec/16
r is radius (m)  n is angular velocity(rad/s)  what is ω?
risradius(m)nisangularvelocity(rad/s)whatisω?
Commented by sandy_suhendra last updated on 23/Dec/16
I think that is F=Kr^a η^b v^c   η=coefficient of viscosity (Pa s)  r=radius of the ball (m)  v=velocity of the ball (m/s)  and [F]=[M][L][T]^(−2)            [r]=[L]           [η]=[M][L]^(−1) [T]^(−1)            [v]=[L][T]^(−1)     F=Kr^a η^b v^c   [M][L][T]^(−2) =[L]^a {[M]^b [L]^(−b) [T]^(−b) }{[L]^c [T]^(−c) }  [M][L][T]^(−2) =[M]^b [L]^(a−b+c) [T]^(−b−c)   so    b=1         −b−c=−2 ⇒ c=1          a−b+c=1 ⇒ a=1
IthinkthatisF=Kraηbvcη=coefficientofviscosity(Pas)r=radiusoftheball(m)v=velocityoftheball(m/s)and[F]=[M][L][T]2[r]=[L][η]=[M][L]1[T]1[v]=[L][T]1F=Kraηbvc[M][L][T]2=[L]a{[M]b[L]b[T]b}{[L]c[T]c}[M][L][T]2=[M]b[L]ab+c[T]bcsob=1bc=2c=1ab+c=1a=1
Commented by ridwan balatif last updated on 23/Dec/16
now i understand
nowiunderstand
Commented by tawakalitu last updated on 23/Dec/16
i really appreciate. God bless you.
ireallyappreciate.Godblessyou.
Answered by ridwan balatif last updated on 23/Dec/16
dimentional  F=kgms^(−2)       =[M][L][T]^(−2)   r  =m       =[L]  η  =Pa.s=kgm^(−1) s^(−1)        =[M][L]^(−1) [T]^(−1)   ω =rad/s       =[T]^(−1)   F=k.r^a .η.^b ω^c   [M][L][T]^(−2) =([L])^a ([M][L]^(−1) [T]^(−1) )^b ([T]^(−1) )^c   [M][L][T]^(−2) =[M]^b [L]^(a−b) [T]^(−b−c)   from dimentional [M] we get b=1  from dimentional [L] we get a−b=1  a−1=1  a=2  from dimentional [T] we get −b−c=−2  −1−c=−2  c=1  so, a=2 b=1 c=1  F=kr^2 ηω
dimentionalF=kgms2=[M][L][T]2r=m=[L]η=Pa.s=kgm1s1=[M][L]1[T]1ω=rad/s=[T]1F=k.ra.η.bωc[M][L][T]2=([L])a([M][L]1[T]1)b([T]1)c[M][L][T]2=[M]b[L]ab[T]bcfromdimentional[M]wegetb=1fromdimentional[L]wegetab=1a1=1a=2fromdimentional[T]wegetbc=21c=2c=1so,a=2b=1c=1F=kr2ηω
Commented by sandy_suhendra last updated on 23/Dec/16
I think that is not ω (rad/s) but v=linear velocity (m/s)  because the formula must be F=6πrηv  and K=6π   [Stokes′ Law]
Ithinkthatisnotω(rad/s)butv=linearvelocity(m/s)becausetheformulamustbeF=6πrηvandK=6π[StokesLaw]
Commented by ridwan balatif last updated on 23/Dec/16
yeah, i remember now  thank you sir
yeah,iremembernowthankyousir
Commented by tawakalitu last updated on 23/Dec/16
i really appreciate, God bless you.
ireallyappreciate,Godblessyou.

Leave a Reply

Your email address will not be published. Required fields are marked *