Menu Close

Explicit-f-a-n-1-1-n-n-an-1-




Question Number 68149 by ~ À ® @ 237 ~ last updated on 06/Sep/19
 Explicit   f(a)=Σ_(n=1) ^∞    (((−1)^n )/(n(an+1)))
Explicitf(a)=n=1(1)nn(an+1)
Commented by turbo msup by abdo last updated on 06/Sep/19
if a=0   f(0)=Σ_(n=1) ^∞  (((−1)^n )/n)  =−ln(2)  if a≠0   we have ((f(a))/a)=Σ_(n=1) ^∞ (((−1)^n )/(an(an+1)))  =Σ_(n=1) ^∞ (−1)^n {(1/(an))−(1/(an+1))}  =(1/a)Σ_(n=1) ^∞  (((−1)^n )/n)−Σ_(n=1) ^∞  (((−1)^n )/(an+1))  =−(1/a)ln(2)−Σ_(n=1) ^∞  (((−1)^n )/(an+1))  let s(x) =Σ_(n=1) ^∞  (((−1)^n )/(an+1))x^(an+1)   with∣x∣<1  s(1)=Σ_(n=1) ^∞   (((−1)^n )/(an+1))  s^′ (x) =Σ_(n=1) ^∞   (−1)^n x^(an)   =Σ_(n=1) ^∞ (−x^a )^n   =(1/(1+x^a )) ⇒  s(x) =∫_0 ^x    (dt/(1+t^a )) +c  s(0)=0=c ⇒s(x)=∫_0 ^x  (dt/(1+t^a )) ⇒  s(1) =∫_0 ^1   (dt/(1+t^a ))  ⇒  ((f(a))/a) =−(1/a)ln(2)−∫_0 ^1  (dt/(1+t^a )) ⇒  f(a) =−ln(2)−a∫_0 ^1  (dt/(1+t^a ))  be continued....
ifa=0f(0)=n=1(1)nn=ln(2)ifa0wehavef(a)a=n=1(1)nan(an+1)=n=1(1)n{1an1an+1}=1an=1(1)nnn=1(1)nan+1=1aln(2)n=1(1)nan+1lets(x)=n=1(1)nan+1xan+1withx∣<1s(1)=n=1(1)nan+1s(x)=n=1(1)nxan=n=1(xa)n=11+xas(x)=0xdt1+ta+cs(0)=0=cs(x)=0xdt1+tas(1)=01dt1+taf(a)a=1aln(2)01dt1+taf(a)=ln(2)a01dt1+tabecontinued.
Commented by mathmax by abdo last updated on 06/Sep/19
error from line 10  s^′ (x) =Σ_(n=1) ^∞ (−x^a )^n  =−x^a Σ_(n=1) ^∞ (−x^a )^(n−1)   =−x^a Σ_(n=0) ^∞  (−x^a )^n  =((−x^a )/(1+x^a )) ⇒s(x) =−∫_0 ^x  (t^a /(1+t^a ))dt +c  s(0) =0 =c ⇒s(x) =−∫_0 ^x  (t^a /(1+t^a ))dt ⇒  Σ_(n=1) ^∞   (((−1)^n )/(an+1)) =s(1) =−∫_0 ^1  (t^a /(1+t^a ))dt  =−∫_0 ^1  ((1+t^a −1)/(1+t^a ))dt  =−1 +∫_0 ^1     (dt/(1+t^a ))    be continued...
errorfromline10s(x)=n=1(xa)n=xan=1(xa)n1=xan=0(xa)n=xa1+xas(x)=0xta1+tadt+cs(0)=0=cs(x)=0xta1+tadtn=1(1)nan+1=s(1)=01ta1+tadt=011+ta11+tadt=1+01dt1+tabecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *