Menu Close

explicitez-la-suite-u-n-definie-par-la-relation-u-0-0-u-1-1-u-n-2-u-n-1-u-n-n-N-u-n-calculer-la-lim-n-u-n-1-u-n-montre-que-k-0-n-u-k-u-




Question Number 67148 by Cmr 237 last updated on 29/Aug/19
explicitez   la suite u_n definie par la relation;   { ((u_0 =0, u_1 =1)),((u_(n+2) =u_(n+1) +u_n    ∀n∈∤N)) :}  u_n =????????  −calculer la lim _(n→∞) (u_(n+1) /u_n )=???  −montre que Σ_(k=0) ^n u_k =u_(n+2) −1        voila^′
$$\mathrm{explicitez}\:\:\:\mathrm{la}\:\mathrm{suite}\:\mathrm{u}_{\mathrm{n}} \mathrm{definie}\:\mathrm{par}\:\mathrm{la}\:\mathrm{relation}; \\ $$$$\begin{cases}{\mathrm{u}_{\mathrm{0}} =\mathrm{0},\:\mathrm{u}_{\mathrm{1}} =\mathrm{1}}\\{\mathrm{u}_{\mathrm{n}+\mathrm{2}} =\mathrm{u}_{\mathrm{n}+\mathrm{1}} +\mathrm{u}_{\mathrm{n}} \:\:\:\forall\mathrm{n}\in\nmid\boldsymbol{\mathrm{N}}}\end{cases} \\ $$$$\boldsymbol{{u}}_{\boldsymbol{{n}}} =???????? \\ $$$$−\mathrm{calculer}\:\mathrm{la}\:\mathrm{lim}\underset{\mathrm{n}\rightarrow\infty} {\:}\frac{\mathrm{u}_{\mathrm{n}+\mathrm{1}} }{\mathrm{u}_{\mathrm{n}} }=??? \\ $$$$−\mathrm{montre}\:\mathrm{que}\:\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\mathrm{u}_{\mathrm{k}} =\mathrm{u}_{\mathrm{n}+\mathrm{2}} −\mathrm{1} \\ $$$$\:\:\:\:\:\:\mathrm{voila}^{'} \\ $$
Commented by Tony Lin last updated on 23/Aug/19
Fibonacci Sequence  u_n =(1/( (√5)))[(((1+(√5))/2))^n −(((1−(√5))/2))^n ]
$${Fibonacci}\:{Sequence} \\ $$$${u}_{{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left[\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} −\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \right] \\ $$
Commented by mathmax by abdo last updated on 23/Aug/19
u_(n+2) =u_(n+1)  +u_n  ⇒u_(n+2) −u_(n+1)  −u_n =0   caracteristic equation →x^2 −x−1=0  Δ =1−4(−1)=5 ⇒x_1 =((1+(√5))/2)  and x_2 =((1−(√5))/2)  ⇒ u_n =a(((1+(√5))/2))^n  +b(((1−(√5))/2))^n   u_0 =0 =a+b  u_1 =a(((1+(√5))/2))+b(((1−(√5))/2)) =1 ⇒(1+(√5))a+(1−(√5))b =2 we?get  the system  { ((a+b=0)),(((1+(√5))a+(1−(√5))b =2)) :}  Δ = determinant (((1                     1)),((1+(√5)     1−(√5))))  =1−(√5)−1−(√5)=−2(√5) ⇒  a =(Δ_a /Δ)  = ( determinant (((0                   1)),((2             1−(√5))))/(−2(√5))) =((−2)/(−2(√5))) =(1/( (√5)))  b =(Δ_b /Δ) = (( determinant (((1               0)),((1+(√5)      2)))  )/(−2(√5))) =(2/(−2(√5))) =−(1/( (√5)))  ⇒  u_n =(1/( (√5)))(((1+(√5))/2))^n −(1/( (√5)))(((1−(√5))/2))^n
$${u}_{{n}+\mathrm{2}} ={u}_{{n}+\mathrm{1}} \:+{u}_{{n}} \:\Rightarrow{u}_{{n}+\mathrm{2}} −{u}_{{n}+\mathrm{1}} \:−{u}_{{n}} =\mathrm{0}\: \\ $$$${caracteristic}\:{equation}\:\rightarrow{x}^{\mathrm{2}} −{x}−\mathrm{1}=\mathrm{0} \\ $$$$\Delta\:=\mathrm{1}−\mathrm{4}\left(−\mathrm{1}\right)=\mathrm{5}\:\Rightarrow{x}_{\mathrm{1}} =\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:{and}\:{x}_{\mathrm{2}} =\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\Rightarrow\:{u}_{{n}} ={a}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \:+{b}\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \\ $$$${u}_{\mathrm{0}} =\mathrm{0}\:={a}+{b} \\ $$$${u}_{\mathrm{1}} ={a}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)+{b}\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)\:=\mathrm{1}\:\Rightarrow\left(\mathrm{1}+\sqrt{\mathrm{5}}\right){a}+\left(\mathrm{1}−\sqrt{\mathrm{5}}\right){b}\:=\mathrm{2}\:{we}?{get} \\ $$$${the}\:{system}\:\begin{cases}{{a}+{b}=\mathrm{0}}\\{\left(\mathrm{1}+\sqrt{\mathrm{5}}\right){a}+\left(\mathrm{1}−\sqrt{\mathrm{5}}\right){b}\:=\mathrm{2}}\end{cases} \\ $$$$\Delta\:=\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{1}+\sqrt{\mathrm{5}}\:\:\:\:\:\mathrm{1}−\sqrt{\mathrm{5}}}\end{vmatrix}\:\:=\mathrm{1}−\sqrt{\mathrm{5}}−\mathrm{1}−\sqrt{\mathrm{5}}=−\mathrm{2}\sqrt{\mathrm{5}}\:\Rightarrow \\ $$$${a}\:=\frac{\Delta_{{a}} }{\Delta}\:\:=\:\frac{\begin{vmatrix}{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}}\\{\mathrm{2}\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{1}−\sqrt{\mathrm{5}}}\end{vmatrix}}{−\mathrm{2}\sqrt{\mathrm{5}}}\:=\frac{−\mathrm{2}}{−\mathrm{2}\sqrt{\mathrm{5}}}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$${b}\:=\frac{\Delta_{{b}} }{\Delta}\:=\:\frac{\begin{vmatrix}{\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}}\\{\mathrm{1}+\sqrt{\mathrm{5}}\:\:\:\:\:\:\mathrm{2}}\end{vmatrix}\:\:}{−\mathrm{2}\sqrt{\mathrm{5}}}\:=\frac{\mathrm{2}}{−\mathrm{2}\sqrt{\mathrm{5}}}\:=−\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\:\:\Rightarrow \\ $$$${u}_{{n}} =\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} −\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\left(\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{{n}} \: \\ $$
Commented by mathmax by abdo last updated on 23/Aug/19
we have u_n =u_(n+2) −u_(n+1)  ⇒Σ_(k=0) ^n  u_k =Σ_(k=0) ^n (u_(k+2) −u_(k+1) )  =u_2 −u_1 +u_3 −u_2 +....+u_(n+2) −u_(n+1) =u_(n+2) −u_1 =u_(n+2) −1
$${we}\:{have}\:{u}_{{n}} ={u}_{{n}+\mathrm{2}} −{u}_{{n}+\mathrm{1}} \:\Rightarrow\sum_{{k}=\mathrm{0}} ^{{n}} \:{u}_{{k}} =\sum_{{k}=\mathrm{0}} ^{{n}} \left({u}_{{k}+\mathrm{2}} −{u}_{{k}+\mathrm{1}} \right) \\ $$$$={u}_{\mathrm{2}} −{u}_{\mathrm{1}} +{u}_{\mathrm{3}} −{u}_{\mathrm{2}} +….+{u}_{{n}+\mathrm{2}} −{u}_{{n}+\mathrm{1}} ={u}_{{n}+\mathrm{2}} −{u}_{\mathrm{1}} ={u}_{{n}+\mathrm{2}} −\mathrm{1} \\ $$
Commented by Kunal12588 last updated on 23/Aug/19
what are Δ_a  & Δ_b  sir, seems useful.  can they help to solve for 3 unknows
$${what}\:{are}\:\Delta_{{a}} \:\&\:\Delta_{{b}} \:{sir},\:{seems}\:{useful}. \\ $$$${can}\:{they}\:{help}\:{to}\:{solve}\:{for}\:\mathrm{3}\:{unknows} \\ $$
Commented by mathmax by abdo last updated on 23/Aug/19
yes its general for unknown (x_i )  this is the kramer method in  case if the system have one solution.
$${yes}\:{its}\:{general}\:{for}\:{unknown}\:\left({x}_{{i}} \right)\:\:{this}\:{is}\:{the}\:{kramer}\:{method}\:{in} \\ $$$${case}\:{if}\:{the}\:{system}\:{have}\:{one}\:{solution}. \\ $$
Commented by mathmax by abdo last updated on 23/Aug/19
let q=((1+(√5))/2) and q^′ =((1−(√5))/2) ⇒(√5)u_n =q^n −q^(′n) =q^n {1−((q^′ /q))^n }  (q^′ /q) =((1−(√5))/(1+(√5))) =1−((2(√5))/(1+(√5))) ⇒∣(q^′ /q)∣<1 ⇒(√5)u_n ∼q^n  and  (√5)u_(n+1) ∼q^(n+1)  ⇒ (u_(n+1) /u_n )∼ q ⇒lim_(n→+∞) (u_(n+1) /u_n ) =((1+(√5))/2)  (golden number ϕ)
$${let}\:{q}=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:{and}\:{q}^{'} =\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\:\Rightarrow\sqrt{\mathrm{5}}{u}_{{n}} ={q}^{{n}} −{q}^{'{n}} ={q}^{{n}} \left\{\mathrm{1}−\left(\frac{{q}^{'} }{{q}}\right)^{{n}} \right\} \\ $$$$\frac{{q}^{'} }{{q}}\:=\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{1}+\sqrt{\mathrm{5}}}\:=\mathrm{1}−\frac{\mathrm{2}\sqrt{\mathrm{5}}}{\mathrm{1}+\sqrt{\mathrm{5}}}\:\Rightarrow\mid\frac{{q}^{'} }{{q}}\mid<\mathrm{1}\:\Rightarrow\sqrt{\mathrm{5}}{u}_{{n}} \sim{q}^{{n}} \:{and} \\ $$$$\sqrt{\mathrm{5}}{u}_{{n}+\mathrm{1}} \sim{q}^{{n}+\mathrm{1}} \:\Rightarrow\:\frac{{u}_{{n}+\mathrm{1}} }{{u}_{{n}} }\sim\:{q}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \frac{{u}_{{n}+\mathrm{1}} }{{u}_{{n}} }\:=\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\:\:\left({golden}\:{number}\:\varphi\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *