Menu Close

Express-28-as-continued-fraction-




Question Number 71518 by TawaTawa last updated on 16/Oct/19
Express  (√(28))  as continued fraction
Express28ascontinuedfraction
Commented by Prithwish sen last updated on 16/Oct/19
(√(28)) = 1+ (√(28))−1          = 1+  ((27)/( (√(28))+1)) = 1+((27)/(2+(√(28))−1))         = 1+((27)/(2+((27)/( (√(28))+1)))) = 1+((27)/(2+((27)/(2+((27)/(2+((27)/(2+._._(..)  ))))))))  please check.
28=1+281=1+2728+1=1+272+281=1+272+2728+1=1+272+272+272+272+....pleasecheck.
Commented by Prithwish sen last updated on 16/Oct/19
(√(28)) = 5+(√(28)) −5          = 5+ (3/( (√(28))+5)) =5 + (3/(10 +(√(28))−5))           = 5+(3/(10 +(3/( (√(28))+5)))) = 5+(3/(10+(3/(10+(3/(10+(3/._._.  )))))))  please check.
28=5+285=5+328+5=5+310+285=5+310+328+5=5+310+310+310+3...pleasecheck.
Commented by TawaTawa last updated on 16/Oct/19
God bless you sir
Godblessyousir
Commented by TawaTawa last updated on 16/Oct/19
Commented by TawaTawa last updated on 16/Oct/19
How did wolframe get this sir
Howdidwolframegetthissir
Commented by Prithwish sen last updated on 16/Oct/19
let do the back calculation  If  x = (1/(3+(1/(2+(1/(3+(1/(10+x))))))))  by calculating we get  x^2 +10x−3 =0  ⇒x = −5±(√(28))  I dont think it will be the correct expression.  Please anyone give some comments.
letdothebackcalculationIfx=13+12+13+110+xbycalculatingwegetx2+10x3=0x=5±28Idontthinkitwillbethecorrectexpression.Pleaseanyonegivesomecomments.
Commented by mr W last updated on 16/Oct/19
correct is  5+(1/(3+(1/(2+(1/(3+(1/(10+(1/(3+(1/(2+(1/(3+(1/(10+...))))))))))))))))
correctis5+13+12+13+110+13+12+13+110+
Commented by Prithwish sen last updated on 17/Oct/19
Thank you sir.
Thankyousir.
Answered by mr W last updated on 16/Oct/19
5<(√(28))<6  x_0 =(√(28)), a_0 =⌊x_0 ⌋=5  x_1 =(1/( (√(28))−5))=(((√(28))+5)/3), a_1 =⌊x_1 ⌋=3  x_2 =(1/((((√(28))+5)/3)−3))=(3/( (√(28))−4))=(((√(28))+4)/4), a_2 =⌊x_2 ⌋=2  x_3 =(1/((((√(28))+4)/4)−2))=(4/( (√(28))−4))=(((√(28))+4)/3), a_3 =⌊x_3 ⌋=3  x_4 =(1/((((√(28))+4)/3)−3))=(3/( (√(28))−5))=(√(28))+5, a_4 =⌊x_4 ⌋=10  x_5 =(1/( (√(28))+5−10))=(1/( (√(28))−5))=(((√(28))+5)/3)=x_1 , a_4 =a_1 =3  ......  ⇒(√(28))=5+(1/(3+(1/(2+(1/(3+(1/(10+(1/(3+(1/(2+(1/(3+(1/(10+...))))))))))))))))    an other example (√(38))  6<(√(38))<7  x_0 =(√(38)), a_0 =⌊x_0 ⌋=6  x_1 =(1/( (√(38))−6))=(((√(38))+6)/2), a_1 =⌊x_1 ⌋=6  x_2 =(1/((((√(38))+6)/2)−6))=(2/( (√(38))−6))=(√(38))+6, a_2 =⌊x_2 ⌋=12  x_3 =(1/( (√(38))+6−12))=(1/( (√(38))−6))=(((√(38))+6)/2)=x_1 , a_3 =a_1 =6  ......  ⇒(√(38))=6+(1/(6+(1/(12+(1/(6+(1/(12+...))))))))
5<28<6x0=28,a0=x0=5x1=1285=28+53,a1=x1=3x2=128+533=3284=28+44,a2=x2=2x3=128+442=4284=28+43,a3=x3=3x4=128+433=3285=28+5,a4=x4=10x5=128+510=1285=28+53=x1,a4=a1=328=5+13+12+13+110+13+12+13+110+anotherexample386<38<7x0=38,a0=x0=6x1=1386=38+62,a1=x1=6x2=138+626=2386=38+6,a2=x2=12x3=138+612=1386=38+62=x1,a3=a1=638=6+16+112+16+112+
Commented by TawaTawa last updated on 16/Oct/19
God bless you sir. Thanks for your time sir.
Godblessyousir.Thanksforyourtimesir.
Commented by TawaTawa last updated on 17/Oct/19
How can i use it to find the solution to   x^2  − 28y^2   =  1
Howcaniuseittofindthesolutiontox228y2=1
Commented by mind is power last updated on 17/Oct/19
X^2 −28y^2 =1?
X228y2=1?
Commented by TawaTawa last updated on 17/Oct/19
Yes sir
Yessir
Commented by mr W last updated on 17/Oct/19
x^2 −28y^2 =1 is a curve, it has infinite  solutions (x,y). this has nothing to do  with how you express (√(28)).
x228y2=1isacurve,ithasinfinitesolutions(x,y).thishasnothingtodowithhowyouexpress28.
Commented by Prithwish sen last updated on 17/Oct/19
It is a long process.Please see PELL′S equation.  Or please give me some time.
Itisalongprocess.PleaseseePELLSequation.Orpleasegivemesometime.
Commented by Prithwish sen last updated on 17/Oct/19
x^2 −28y^2 =1  now (√(28)) =[5, 3,2,3,10 ]  the expression is periodic from 10  ∴ the first 4 convergents are  (5/1),((16)/3),((37)/7),((127)/(24)) = (p_1 /q_1 )  thus the equation satisfies for  x=127 and y=24  please check  I have the solutions only .For further information  you have to study the Pell′s equation.
x228y2=1now28=[5,3,2,3,10]theexpressionisperiodicfrom10thefirst4convergentsare51,163,377,12724=p1q1thustheequationsatisfiesforx=127andy=24pleasecheckIhavethesolutionsonly.ForfurtherinformationyouhavetostudythePellsequation.
Commented by TawaTawa last updated on 17/Oct/19
God bless you sir
GodblessyousirGodblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *