Menu Close

Express-f-x-x-t-e-x-as-a-series-




Question Number 9804 by FilupSmith last updated on 05/Jan/17
Express f(x)=x^t e^x  as a series
$$\mathrm{Express}\:{f}\left({x}\right)={x}^{{t}} {e}^{{x}} \:\mathrm{as}\:\mathrm{a}\:\mathrm{series} \\ $$
Commented by FilupSmith last updated on 07/Jan/17
x^t =e^(tln(x))       =Σ_(n=0) ^∞ ((t^n ln^n (x))/(n!))  ∴ x^t e^x =Σ_(n=0) ^∞ ((t^n e^x ln^n (x))/(n!))
$${x}^{{t}} ={e}^{{t}\mathrm{ln}\left({x}\right)} \\ $$$$\:\:\:\:=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{t}^{{n}} \mathrm{ln}^{{n}} \left({x}\right)}{{n}!} \\ $$$$\therefore\:{x}^{{t}} {e}^{{x}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{t}^{{n}} {e}^{{x}} \mathrm{ln}^{{n}} \left({x}\right)}{{n}!} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *