Menu Close

Express-in-partial-fraction-f-x-2x-3-x-2-x-2-1-x-1-x-2-x-1-2-Hence-or-otherwise-show-that-0




Question Number 68675 by Rio Michael last updated on 14/Sep/19
                                         Express in partial fraction                                           f(x) ≡ ((2x^3  + x + 2)/((x^2 +1)(x+1)(x−2))) x ≠ −1,2  Hence or otherwise  show that     ∫_0 ^1 f(x) dx = −(1/(12))[ 13ln 2 + π]
Expressinpartialfractionf(x)2x3+x+2(x2+1)(x+1)(x2)x1,2Henceorotherwiseshowthat01f(x)dx=112[13ln2+π]
Commented by mathmax by abdo last updated on 14/Sep/19
f(x)=((2x^3  +x+2)/((x+1)(x−2)(x^2 +1))) =(a/(x+1))+(b/(x−2)) +((cx+d)/(x^2  +1))  a =lim_(x→−1) (x+1)f(x) =((−1)/((−3)(2))) =(1/6)  b =lim_(x→2) (x−2)f(x) =((16+4)/(3.5)) =((20)/(15)) =(4/3)  lim_(x→+∞) xf(x)=2 =a+b +c ⇒c=2−a−b =2−(1/6)−(4/3)  =((12−1−8)/6) =(1/2) ⇒f(x)=(1/(6(x+1))) +(4/(3(x−2))) +(((1/2)x+d)/(x^2  +1))  f(0)=−1 =(1/6)−(2/3) +(1/2)+d =((1−4+3)/6) +d =d⇒d=−1 ⇒  f(x) =(1/(6(x+1))) +(4/(3(x−2))) +(1/2)((x−2)/(x^(2 ) +1))  ∫_0 ^1  f(x)dx =(1/6)[ln∣x+1∣]_0 ^1  +(4/3)[ln∣x−2∣]_0 ^1   +(1/4)[ln(x^2  +1)]_0 ^1   −[arctanx]_0 ^1  =(1/6)ln(2)−(4/3)ln(2) +(1/4)ln(2)−(π/4)  =((1/6)−(4/3)+(1/4))ln(2)−(π/4) =((2−16+3)/(12))ln(2)−(π/4)  ⇒  ∫_0 ^1 f(x)dx =−((11)/(12))ln(2)−(π/4)
f(x)=2x3+x+2(x+1)(x2)(x2+1)=ax+1+bx2+cx+dx2+1a=limx1(x+1)f(x)=1(3)(2)=16b=limx2(x2)f(x)=16+43.5=2015=43limx+xf(x)=2=a+b+cc=2ab=21643=12186=12f(x)=16(x+1)+43(x2)+12x+dx2+1f(0)=1=1623+12+d=14+36+d=dd=1f(x)=16(x+1)+43(x2)+12x2x2+101f(x)dx=16[lnx+1]01+43[lnx2]01+14[ln(x2+1)]01[arctanx]01=16ln(2)43ln(2)+14ln(2)π4=(1643+14)ln(2)π4=216+312ln(2)π401f(x)dx=1112ln(2)π4
Commented by mathmax by abdo last updated on 14/Sep/19
there is a error in the question!
thereisaerrorinthequestion!
Commented by Rio Michael last updated on 15/Sep/19
anyway thanks alot guys i found my error
anywaythanksalotguysifoundmyerror

Leave a Reply

Your email address will not be published. Required fields are marked *