Menu Close

expressf-8cos-15sin-in-the-form-rcos-where-r-gt-0-and-is-a-positive-acute-angle-hence-find-the-general-solution-of-the-equation-80cos-150sin-13-the-maximum-and-minimum-value-




Question Number 73544 by Rio Michael last updated on 13/Nov/19
expressf(θ)= 8cosθ −15sinθ in the form   rcos(θ + α), where r>0 and α is a positive acute angle  hence  find the general solution of the equation    80cos θ −150sinθ = 13  the maximum and minimum value of  (5/(f(θ) + 3))
$${expressf}\left(\theta\right)=\:\mathrm{8}{cos}\theta\:−\mathrm{15}{sin}\theta\:{in}\:{the}\:{form} \\ $$$$\:{rcos}\left(\theta\:+\:\alpha\right),\:{where}\:{r}>\mathrm{0}\:{and}\:\alpha\:{is}\:{a}\:{positive}\:{acute}\:{angle} \\ $$$${hence} \\ $$$${find}\:{the}\:{general}\:{solution}\:{of}\:{the}\:{equation} \\ $$$$\:\:\mathrm{80}{cos}\:\theta\:−\mathrm{150}{sin}\theta\:=\:\mathrm{13} \\ $$$${the}\:{maximum}\:{and}\:{minimum}\:{value}\:{of}\:\:\frac{\mathrm{5}}{{f}\left(\theta\right)\:+\:\mathrm{3}} \\ $$
Answered by mind is power last updated on 13/Nov/19
8cos(θ)−15sin(θ)=17{(8/(17))cos(θ)−((15)/(17))sin(θ)}  =17cos(θ+arcos((8/(17))))  α=arcos((8/(17)))  80cos(θ)−150sin(θ)=170cos(θ+α)=13  cos(θ+α)=((13)/(170))  θ+α=+_− arcos(((13)/(170)))+2kπ  min and max  didnt exist  since f(θ)=−3 hase solution
$$\mathrm{8}{cos}\left(\theta\right)−\mathrm{15}{sin}\left(\theta\right)=\mathrm{17}\left\{\frac{\mathrm{8}}{\mathrm{17}}{cos}\left(\theta\right)−\frac{\mathrm{15}}{\mathrm{17}}{sin}\left(\theta\right)\right\} \\ $$$$=\mathrm{17}{cos}\left(\theta+{arcos}\left(\frac{\mathrm{8}}{\mathrm{17}}\right)\right) \\ $$$$\alpha={arcos}\left(\frac{\mathrm{8}}{\mathrm{17}}\right) \\ $$$$\mathrm{80}{cos}\left(\theta\right)−\mathrm{150}{sin}\left(\theta\right)=\mathrm{170}{cos}\left(\theta+\alpha\right)=\mathrm{13} \\ $$$${cos}\left(\theta+\alpha\right)=\frac{\mathrm{13}}{\mathrm{170}} \\ $$$$\theta+\alpha=\underset{−} {+}{arcos}\left(\frac{\mathrm{13}}{\mathrm{170}}\right)+\mathrm{2}{k}\pi \\ $$$${min}\:{and}\:{max}\:\:{didnt}\:{exist} \\ $$$${since}\:{f}\left(\theta\right)=−\mathrm{3}\:{hase}\:{solution} \\ $$
Commented by Rio Michael last updated on 13/Nov/19
wonderful sir
$${wonderful}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *