Menu Close

expressing-P-x-x-2-x-x-3-x-2-2-in-partial-fractions-gives-A-A-x-3-Bx-C-x-2-2-B-A-x-3-B-x-2-C-x-2-C-A-x-3-B-x-2-C-x-2-D




Question Number 78075 by Rio Michael last updated on 14/Jan/20
expressing  P(x) = ((x^2  + x)/((x−3)(x^2 −2))) in partial fractions gives  A.  (A/((x−3))) + ((Bx + C)/((x^2 −2)))   B.  (A/(x−3)) + (B/(x−2)) + (C/(x+2))  C. (A/(x−3)) + (B/(x−(√2))) + (C/(x + (√2)))  D. ((Ax + B)/(x−3)) + (C/(x^2 −2))
$${expressing}\:\:{P}\left({x}\right)\:=\:\frac{{x}^{\mathrm{2}} \:+\:{x}}{\left({x}−\mathrm{3}\right)\left({x}^{\mathrm{2}} −\mathrm{2}\right)}\:{in}\:{partial}\:{fractions}\:{gives} \\ $$$${A}.\:\:\frac{{A}}{\left({x}−\mathrm{3}\right)}\:+\:\frac{{Bx}\:+\:{C}}{\left({x}^{\mathrm{2}} −\mathrm{2}\right)}\: \\ $$$${B}.\:\:\frac{{A}}{{x}−\mathrm{3}}\:+\:\frac{{B}}{{x}−\mathrm{2}}\:+\:\frac{{C}}{{x}+\mathrm{2}} \\ $$$${C}.\:\frac{{A}}{{x}−\mathrm{3}}\:+\:\frac{{B}}{{x}−\sqrt{\mathrm{2}}}\:+\:\frac{{C}}{{x}\:+\:\sqrt{\mathrm{2}}} \\ $$$${D}.\:\frac{{Ax}\:+\:{B}}{{x}−\mathrm{3}}\:+\:\frac{{C}}{{x}^{\mathrm{2}} −\mathrm{2}} \\ $$
Commented by mr W last updated on 14/Jan/20
both A and C are possible
$${both}\:{A}\:{and}\:{C}\:{are}\:{possible} \\ $$
Commented by mathmax by abdo last updated on 14/Jan/20
the correct decomposition is C
$${the}\:{correct}\:{decomposition}\:{is}\:{C} \\ $$
Commented by Rio Michael last updated on 14/Jan/20
sirs is C actually correct?   or can i use both A and C as answers?
$${sirs}\:{is}\:{C}\:{actually}\:{correct}?\: \\ $$$${or}\:{can}\:{i}\:{use}\:{both}\:{A}\:{and}\:{C}\:{as}\:{answers}? \\ $$
Commented by mr W last updated on 14/Jan/20
C is correct.
$${C}\:{is}\:{correct}. \\ $$
Commented by Rio Michael last updated on 14/Jan/20
okay sir thanks
$${okay}\:{sir}\:{thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *