f-0-1-R-f-0-1-f-2-dx-and-if-x-0-1-f-m-M-for-some-m-M-R-2-f-max-f-f-f-f-min-f-f-0-1-f-f-dx-then-f-e-x-f-f-f-x-f-f-f-f-0-f-f-0-f-0-do Tinku Tara June 3, 2023 Operation Research 0 Comments FacebookTweetPin Question Number 2032 by 123456 last updated on 31/Oct/15 f:[0,+1]→Rη(f):=∫10f2dxandif∀x∈[0,1],f∈[m,M]forsome(m,M)∈R2f↑:=max(f)−ff↓:=f−min(f)μ(f):=∫10f↓f↑dxthenf=ex,η(f)=?μ(f)f=x,η(f)=?μ(f)∃f,η(f)=0???∃f,μ(f)=0???μ(f)=0,doesη(f)=0???η(f)=0,doesμ(f)=0??? Commented by Yozzi last updated on 31/Oct/15 Anattemptmax(f)=M,min(f)=m∴f↑=M−f,f↓=f−mμ(f)=∫10f↑f↓dx=∫01(M−f)(f−m)dxμ(f)=∫01(M+m)fdx−∫01f2dx−Mm∫01dxμ(f)=(M+m)∫01fdx−η(f)−Mmμ(f)+η(f)=(M+m)∫01fdx−Mmf(x)=exη(ex)=∫01e2xdx=12(e2−1)=12(e+1)(e−1)∀x∈[0,1],ex∈[1,e]⇒m=1,M=e∴μ(ex)=(1+e)∫01exdx−12(e+1)(e−1)−eμ(ex)=(1+e)(e−1)−0.5(e+1)(e−1)−eμ(ex)=0.5(e+1)(e−1)−e≠0.5(e−1)(e+1)μ(ex)≠η(ex)f(x)=xη(x)=∫01x2dx=13∀x∈[0,1],f∈[0,1]⇒m=0,M=1.∴μ(x)=(0+1)∫01xdx−13−0μ(x)=12−13=16≠13∴μ(x)≠η(x)Forf(x)≠0∀x∈[0,1],ifη(f)=0⇒f2isoddforx∈[0,1]Thus,ifϕ(x)=f2(x)⇒ϕ(−x)=−ϕ(x)=−f2(x)But,ϕ(−x)=f2(−x)and,∀f(x)∈R,f2(−x)⩾0.⇒ϕ(−x)⩾0⇒ϕ(−x)≮0asimpliedbyϕ(−x)=−f2(x).∴f2isnotoddforanyx∈R.⇒∄f∈R∣η(f)=0iff(x)≠0.Ifweonlyconsiderthestatementη(f)=0,wecanhavef(x)=0beingafunction.Ifμ(f)=0⇒η(f)=0,0+0=(M+m)∫01fdx−Mm⇒∫01f(x)dx=Mmm+M=max(f)min(f)max(f)+min(f)Isthereafunctionf∈[m,M]suchthat∫01f(x)dx=mMm+M?BythefundamentaltheoremofcalculusF(1)−F(0)=max(F′(x))min(F′(x))max(F′(x))+min(F′(x))Ifη(f)=0⇒μ(f)=(m+M)∫01fdx−Mm∴∫01f2dx=(m+M)∫01fdx−mM∫01(f2(x)−(m+M)f(x))dx=−mM∫01f(x)(f(x)−m+M)dx=−mMThesimplerequationtotheaboveoneis∫01(M−f(x))(f(x)−m)dx=0.∴Letϕ(x)=(M−f(x))(f(x)−m)whereϕ(x)isoddforx∈[0,1]. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-133100Next Next post: Question-133104 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.