Menu Close

f-0-1-R-f-0-1-f-2-dx-and-if-x-0-1-f-m-M-for-some-m-M-R-2-f-max-f-f-f-f-min-f-f-0-1-f-f-dx-then-f-e-x-f-f-f-x-f-f-f-f-0-f-f-0-f-0-do




Question Number 2032 by 123456 last updated on 31/Oct/15
f:[0,+1]→R  η(f):=∫_0 ^1 f^2 dx  and if ∀x∈[0,1],f∈[m,M] for some (m,M)∈R^2   f↑:=max(f)−f  f↓:=f−min(f)  μ(f):=∫_0 ^1 f↓f↑dx  then  f=e^x , η(f)=^? μ(f)  f=x,η(f)=^? μ(f)  ∃f,η(f)=0???  ∃f,μ(f)=0???  μ(f)=0, does η(f)=0???  η(f)=0, does μ(f)=0???
f:[0,+1]Rη(f):=10f2dxandifx[0,1],f[m,M]forsome(m,M)R2f↑:=max(f)ff↓:=fmin(f)μ(f):=10ffdxthenf=ex,η(f)=?μ(f)f=x,η(f)=?μ(f)f,η(f)=0???f,μ(f)=0???μ(f)=0,doesη(f)=0???η(f)=0,doesμ(f)=0???
Commented by Yozzi last updated on 31/Oct/15
An attempt  max(f)=M,min(f)=m  ∴ f↑=M−f , f↓=f−m  μ(f)=∫_0 ^1 f↑f↓dx=∫_0 ^1 (M−f)(f−m)dx  μ(f)=∫_0 ^1 (M+m)fdx−∫_0 ^1 f^2 dx−Mm∫_0 ^1 dx  μ(f)=(M+m)∫_0 ^1 fdx−η(f)−Mm  μ(f)+η(f)=(M+m)∫_0 ^1 fdx−Mm  f(x)=e^x   η(e^x )=∫_0 ^1 e^(2x) dx=(1/2)(e^2 −1)=(1/2)(e+1)(e−1)  ∀x∈[0,1],e^x ∈[1,e]⇒m=1,M=e  ∴μ(e^x )=(1+e)∫_0 ^1 e^x dx−(1/2)(e+1)(e−1)−e  μ(e^x )=(1+e)(e−1)−0.5(e+1)(e−1)−e  μ(e^x )=0.5(e+1)(e−1)−e≠0.5(e−1)(e+1)  μ(e^x )≠η(e^x )    f(x)=x  η(x)=∫_0 ^1 x^2 dx=(1/3)  ∀x∈[0,1], f∈[0,1]⇒m=0,M=1.  ∴μ(x)=(0+1)∫_0 ^1 xdx−(1/3)−0  μ(x)=(1/2)−(1/3)=(1/6)≠(1/3)  ∴μ(x)≠η(x)    For f(x)≠0 ∀x∈[0,1], if η(f)=0⇒f^2  is odd for x∈[0,1]  Thus, if φ(x)=f^2 (x)⇒φ(−x)=−φ(x)=−f^2 (x)  But,φ(−x)=f^2 (−x) and, ∀f(x)∈R, f^2 (−x)≥0.  ⇒φ(−x)≥0⇒φ(−x)≮0 as implied by  φ(−x)=−f^2 (x).  ∴f^2  is not odd for any  x∈R.⇒∄f∈R∣η(f)=0 if f(x)≠0.  If we only consider the statement  η(f)=0, we can have f(x)=0 being a  function.    If μ(f)=0⇒η(f)=0, 0+0=(M+m)∫_0 ^1 fdx−Mm  ⇒∫_0 ^1 f(x)dx=((Mm)/(m+M))=((max(f)min(f))/(max(f)+min(f)))  Is there a function f∈[m,M] such that  ∫_0 ^1 f(x)dx=((mM)/(m+M))?  By the fundamental theorem of calculus    F(1)−F(0)=((max(F^′ (x))min(F^′ (x)))/(max(F^′ (x))+min(F^′ (x))))  If η(f)=0⇒μ(f)=(m+M)∫_0 ^1 fdx−Mm    ∴ ∫_0 ^1 f^2 dx=(m+M)∫_0 ^1 fdx−mM  ∫_0 ^1 (f^2 (x)−(m+M)f(x))dx=−mM  ∫_0 ^1 f(x)(f(x)−m+M)dx=−mM  The simpler equation to the above one  is ∫_0 ^1 (M−f(x))(f(x)−m)dx=0.  ∴ Let φ(x)=(M−f(x))(f(x)−m)  where φ(x) is odd for x∈[0,1].
Anattemptmax(f)=M,min(f)=mf↑=Mf,f↓=fmμ(f)=10ffdx=01(Mf)(fm)dxμ(f)=01(M+m)fdx01f2dxMm01dxμ(f)=(M+m)01fdxη(f)Mmμ(f)+η(f)=(M+m)01fdxMmf(x)=exη(ex)=01e2xdx=12(e21)=12(e+1)(e1)x[0,1],ex[1,e]m=1,M=eμ(ex)=(1+e)01exdx12(e+1)(e1)eμ(ex)=(1+e)(e1)0.5(e+1)(e1)eμ(ex)=0.5(e+1)(e1)e0.5(e1)(e+1)μ(ex)η(ex)f(x)=xη(x)=01x2dx=13x[0,1],f[0,1]m=0,M=1.μ(x)=(0+1)01xdx130μ(x)=1213=1613μ(x)η(x)Forf(x)0x[0,1],ifη(f)=0f2isoddforx[0,1]Thus,ifϕ(x)=f2(x)ϕ(x)=ϕ(x)=f2(x)But,ϕ(x)=f2(x)and,f(x)R,f2(x)0.ϕ(x)0ϕ(x)0asimpliedbyϕ(x)=f2(x).f2isnotoddforanyxR.fRη(f)=0iff(x)0.Ifweonlyconsiderthestatementη(f)=0,wecanhavef(x)=0beingafunction.Ifμ(f)=0η(f)=0,0+0=(M+m)01fdxMm01f(x)dx=Mmm+M=max(f)min(f)max(f)+min(f)Isthereafunctionf[m,M]suchthat01f(x)dx=mMm+M?BythefundamentaltheoremofcalculusF(1)F(0)=max(F(x))min(F(x))max(F(x))+min(F(x))Ifη(f)=0μ(f)=(m+M)01fdxMm01f2dx=(m+M)01fdxmM01(f2(x)(m+M)f(x))dx=mM01f(x)(f(x)m+M)dx=mMThesimplerequationtotheaboveoneis01(Mf(x))(f(x)m)dx=0.Letϕ(x)=(Mf(x))(f(x)m)whereϕ(x)isoddforx[0,1].

Leave a Reply

Your email address will not be published. Required fields are marked *