Menu Close

f-0-R-f-ux-x-u-f-x-f-x-




Question Number 3878 by 123456 last updated on 23/Dec/15
f:[0,+∞)→R  f(ux)=x^u f(x)  f(x)=?
f:[0,+)Rf(ux)=xuf(x)f(x)=?
Commented by Rasheed Soomro last updated on 23/Dec/15
f(ux)=x^u f(x)  Let x=0    f(0)=0^u f(0)=0  x=1  f(ux)=x^u f(x)⇒f(u)=f(1)  ⇒f(1)=f(u)⇒u=1..............................(i)  So,    f(ux)=x^u f(x)⇒x^u =1⇒x=1  For x=1 and u=1 f(x) may have  any  definition.  For example f(x)=x^2   f(ux)=x^u f(x)⇒(ux)^2 =x^u (x^2 )⇒1=1 for x=1,u=1
f(ux)=xuf(x)Letx=0f(0)=0uf(0)=0x=1f(ux)=xuf(x)f(u)=f(1)f(1)=f(u)u=1(i)So,f(ux)=xuf(x)xu=1x=1Forx=1andu=1f(x)mayhaveanydefinition.Forexamplef(x)=x2f(ux)=xuf(x)(ux)2=xu(x2)1=1forx=1,u=1
Commented by prakash jain last updated on 23/Dec/15
f(x)=0  I think f(x)=0 is only solution.
f(x)=0Ithinkf(x)=0isonlysolution.
Answered by RasheedSindhi last updated on 24/Dec/15
  f(ux)=x^u f(x)..............(i)  x=1⇒f(u)=f(1)⇒u=1  u=1⇒ (i) will become  f(x)=xf(x)  xf(x)−f(x)=0  f(x)(x−1)=0  f(x)=0 ∣  x=1
f(ux)=xuf(x)..(i)x=1f(u)=f(1)u=1u=1(i)willbecomef(x)=xf(x)xf(x)f(x)=0f(x)(x1)=0f(x)=0x=1

Leave a Reply

Your email address will not be published. Required fields are marked *