Menu Close

f-1-f-2-f-3-f-n-n-2-f-n-n-gt-1-f-1-2016-So-f-2016-




Question Number 9517 by Joel575 last updated on 12/Dec/16
f(1) + f(2) + f(3) + ... + f(n) = n^2 . f(n)  n > 1; f(1) = 2016  So, f(2016) = ?
$${f}\left(\mathrm{1}\right)\:+\:{f}\left(\mathrm{2}\right)\:+\:{f}\left(\mathrm{3}\right)\:+\:…\:+\:{f}\left({n}\right)\:=\:{n}^{\mathrm{2}} .\:{f}\left({n}\right) \\ $$$${n}\:>\:\mathrm{1};\:{f}\left(\mathrm{1}\right)\:=\:\mathrm{2016} \\ $$$$\mathrm{So},\:{f}\left(\mathrm{2016}\right)\:=\:? \\ $$
Commented by sou1618 last updated on 12/Dec/16
  (i)  :f(1)+f(2)+...+f(n−1)+f(n)=n^2 f(n)  (ii):f(1)+f(2)+...+f(n−1)               =(n−1)^2 f(n−1)  (i)−(ii)⇒  f(n)=n^2 f(n)−(n−1)^2 f(n−1)  ⇔(n^2 −1)f(n)=(n−1)^2 f(n−1)       ,(n≠1)  ⇔(n+1)f(n)=(n−1)f(n−1)        ,(n≠0)  ⇔n(n+1)f(n)=(n−1)nf(n−1)  g(n)=n(n+1)f(n)  ⇒g(n)=g(n−1)  ⇒g(n)=g(n−1)=g(n−2)....=g(1)=1×2×2016  ⇒f(n)=((2×2016)/(n(n+1)))    f(2016)=((2×2016)/(2016×2017))=(2/(2017))
$$ \\ $$$$\left({i}\right)\:\::{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+…+{f}\left({n}−\mathrm{1}\right)+{f}\left({n}\right)={n}^{\mathrm{2}} {f}\left({n}\right) \\ $$$$\left({ii}\right):{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{2}\right)+…+{f}\left({n}−\mathrm{1}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left({n}−\mathrm{1}\right)^{\mathrm{2}} {f}\left({n}−\mathrm{1}\right) \\ $$$$\left({i}\right)−\left({ii}\right)\Rightarrow \\ $$$${f}\left({n}\right)={n}^{\mathrm{2}} {f}\left({n}\right)−\left({n}−\mathrm{1}\right)^{\mathrm{2}} {f}\left({n}−\mathrm{1}\right) \\ $$$$\Leftrightarrow\left({n}^{\mathrm{2}} −\mathrm{1}\right){f}\left({n}\right)=\left({n}−\mathrm{1}\right)^{\mathrm{2}} {f}\left({n}−\mathrm{1}\right)\:\:\:\:\:\:\:,\left({n}\neq\mathrm{1}\right) \\ $$$$\Leftrightarrow\left({n}+\mathrm{1}\right){f}\left({n}\right)=\left({n}−\mathrm{1}\right){f}\left({n}−\mathrm{1}\right)\:\:\:\:\:\:\:\:,\left({n}\neq\mathrm{0}\right) \\ $$$$\Leftrightarrow{n}\left({n}+\mathrm{1}\right){f}\left({n}\right)=\left({n}−\mathrm{1}\right){nf}\left({n}−\mathrm{1}\right) \\ $$$${g}\left({n}\right)={n}\left({n}+\mathrm{1}\right){f}\left({n}\right) \\ $$$$\Rightarrow{g}\left({n}\right)={g}\left({n}−\mathrm{1}\right) \\ $$$$\Rightarrow{g}\left({n}\right)={g}\left({n}−\mathrm{1}\right)={g}\left({n}−\mathrm{2}\right)….={g}\left(\mathrm{1}\right)=\mathrm{1}×\mathrm{2}×\mathrm{2016} \\ $$$$\Rightarrow{f}\left({n}\right)=\frac{\mathrm{2}×\mathrm{2016}}{{n}\left({n}+\mathrm{1}\right)} \\ $$$$ \\ $$$${f}\left(\mathrm{2016}\right)=\frac{\mathrm{2}×\mathrm{2016}}{\mathrm{2016}×\mathrm{2017}}=\frac{\mathrm{2}}{\mathrm{2017}} \\ $$
Commented by Joel575 last updated on 12/Dec/16
in (ii) why u wrote (n−1)^2  f(n+1)? is it a typo?
$$\mathrm{in}\:\left({ii}\right)\:\mathrm{why}\:\mathrm{u}\:\mathrm{wrote}\:\left({n}−\mathrm{1}\right)^{\mathrm{2}} \:{f}\left({n}+\mathrm{1}\right)?\:\mathrm{is}\:\mathrm{it}\:\mathrm{a}\:\mathrm{typo}? \\ $$
Commented by sou1618 last updated on 12/Dec/16
oh.... Thank you very much!  I fixed it.
$${oh}….\:{Thank}\:{you}\:{very}\:{much}! \\ $$$${I}\:{fixed}\:{it}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *