Menu Close

f-1-x-f-x-f-x-




Question Number 2075 by 123456 last updated on 01/Nov/15
f^(−1) (x)=f′(x)  f(x)=??
f1(x)=f(x)f(x)=??
Commented by Yozzi last updated on 01/Nov/15
1=f(x)f^′ (x)  ⇒∫1dx=∫f(x)f^′ (x)dx  x+c=(1/2)[f(x)]^2   2x+c=[f(x)]^2   f(x)=±(√(2x+c))  e.g, c=0,f(x)>0⇒f(x)=(√(2x))  ∴f^′ (x)=(√2)×(1/(2(√x)))  f^′ (x)=(1/( (√(2x))))=(1/(f(x)))
1=f(x)f(x)1dx=f(x)f(x)dxx+c=12[f(x)]22x+c=[f(x)]2f(x)=±2x+ce.g,c=0,f(x)>0f(x)=2xf(x)=2×12xf(x)=12x=1f(x)
Commented by prakash jain last updated on 01/Nov/15
f^(−1) (x) is for inverse of f?
f1(x)isforinverseoff?
Commented by 123456 last updated on 01/Nov/15
yes, inverse function
yes,inversefunction
Commented by Rasheed Soomro last updated on 02/Nov/15
On the comment of Yozzi  Why f(x)>0   [in 6^(th)  line]  Is  f(x)≠0  not sufficient?  ∴ f(x)=±(√(2x))      [Not only +(√(2x))  ]
OnthecommentofYozziWhyf(x)>0[in6thline]Isf(x)0notsufficient?f(x)=±2x[Notonly+2x]
Commented by Yozzi last updated on 02/Nov/15
I was giving an example.  example≡e.g.  The interpretation of the question  was incorrect.
Iwasgivinganexample.examplee.g.Theinterpretationofthequestionwasincorrect.
Answered by prakash jain last updated on 01/Nov/15
f(x)=kx^n   f ′(x)=nkx^(n−1)   y=kx^n ⇒x=((y/k))^(1/n) ⇒f^(−1) (x)=((x/k))^(1/n)   (1/n)=n−1⇒n^2 −n−1=0  n=((1±(√5))/2)     .....(1)  nk=(1/k^(1/n) )⇒nk=k^(−1/n) ⇒k^(−((1+n)/n)) =n⇒k=n^(−(n/(n+1))) ....(2)  f(x)=kx^n  should satisfy the given equation  where n and k are given in (1) and (2).  Checks to be done.
f(x)=kxnf(x)=nkxn1y=kxnx=(yk)1/nf1(x)=(xk)1/n1n=n1n2n1=0n=1±52..(1)nk=1k1/nnk=k1/nk1+nn=nk=nnn+1.(2)f(x)=kxnshouldsatisfythegivenequationwherenandkaregivenin(1)and(2).Checkstobedone.

Leave a Reply

Your email address will not be published. Required fields are marked *