f-a-b-R-a-b-fdx-a-b-1-df-dx-2-dx-does-pi-a-b-f-2-dx-2pi-a-b-f-1-df-dx-2-dx- Tinku Tara June 3, 2023 Others 0 Comments FacebookTweetPin Question Number 1985 by 123456 last updated on 27/Oct/15 f:[a,b]→R∫bafdx=∫ba1+(dfdx)2dxdoesπ∫baf2dx=2π∫baf1+(dfdx)2dx? Commented by Yozzi last updated on 28/Oct/15 ∫abfdx=∫ab1+(dfdx)2dx(area=arclengthforx∈[a,b])⇒∫ba(f−1+(dfdx)2)dx=0…..(1)Ifb≠a,(1)istrueifff−1+(dfdx)2=0.⇒f2=1+(dfdx)2⇒f2−1=(dfdx)2⇒dfdx=±f2−1(∣f∣>1)⇒∫dff2−1=±∫dxLetu=cosh−1(f/a)a≠0coshu=f/aDifferentiatingwrtf⇒sinhu×u′=1/au′=1asinhu=1acosh2u−1u′=1af2a2−1=1a×1af2−a2=1f2−a2Leta=1,dudf=1f2−1⇒u=∫dff2−1∴cosh−1f=±x+Cf=cosh(C±x)C,x∈R⇒f:[a,b]→RLetf=cosh(C+x).∴dfdx=sinh(C+x)Missing \left or extra \rightMissing \left or extra \right⇒1+(dfdx)2=∣cosh(x+C)∣Now,cosh(x+C)⩾1>0∀x,C∈R.∴∣cosh(x+C)∣=cosh(x+C)⇒1+(dfdx)2=cosh(x+C)LetI=2π∫abf1+(dfdx)2dx=2π∫abcosh(x+C)×cosh(x+C)dxI=2π∫bacosh2(x+C)dxNow,letQ=π∫abf2dx=π∫abcosh2(x+C)dx∴I=2Q⇒Q≠Iiff=cosh(x+C).WededuceI≠Qalsoiff=cosh(C−x). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: When-the-polynomial-f-x-is-divided-by-x-2-the-remainder-is-4-and-when-it-is-divided-x-3-the-remainder-is-7-Given-that-f-x-may-be-written-in-the-formf-x-x-2-x-3-Q-x-ax-b-find-the-remainder-Next Next post: let-f-x-z-z-e-xz-e-z-1-x-and-z-from-C-1-prove-that-f-x-z-n-0-B-n-x-z-n-n-with-B-n-x-is-a-unitaire-polynome-with-degre-n-determine-B-n-x-interms-of-B-n-number- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.