Menu Close

f-a-b-R-a-b-fdx-a-b-1-df-dx-2-dx-does-pi-a-b-f-2-dx-2pi-a-b-f-1-df-dx-2-dx-




Question Number 1985 by 123456 last updated on 27/Oct/15
f:[a,b]→R  ∫_a ^b fdx=∫_a ^b (√(1+((df/dx))^2 ))dx  does  π∫_a ^b f^2 dx=2π∫_a ^b f(√(1+((df/dx))^2 ))dx  ?
f:[a,b]Rbafdx=ba1+(dfdx)2dxdoesπbaf2dx=2πbaf1+(dfdx)2dx?
Commented by Yozzi last updated on 28/Oct/15
∫_a ^b fdx=∫_a ^b (√(1+((df/dx))^2 ))dx  (area = arc length for x∈[a,b])  ⇒∫_a ^b (f−(√(1+((df/dx))^2 )))dx=0.....(1)  If b≠a, (1) is true iff        f−(√(1+((df/dx))^2 ))=0.  ⇒f^2 =1+((df/dx))^2   ⇒f^2 −1=((df/dx))^2    ⇒(df/dx)=±(√(f^2 −1))   (∣f∣>1)  ⇒∫(df/( (√(f^2 −1))))=±∫dx  Let u=cosh^(−1) (f/a)   a≠0  coshu=f/a  Differentiating wrt f  ⇒sinhu×u^′ =1/a  u^′ =(1/(asinhu))=(1/(a(√(cosh^2 u−1))))  u^′ =(1/(a(√((f^2 /a^2 )−1))))=(1/(a×(1/a)(√(f^2 −a^2 ))))=(1/( (√(f^2 −a^2 ))))  Let a=1, (du/df)=(1/( (√(f^2 −1))))⇒u=∫(df/( (√(f^2 −1))))  ∴ cosh^(−1) f=±x+C  f=cosh(C±x) C,x∈R⇒ f:[a,b]→R    Let f=cosh(C+x). ∴(df/dx)=sinh(C+x)  ⇒ ((df/dx))^2 +1=sinh^2 (x+C)+1=cosh^2 (x+C)  ⇒(√(1+((df/dx))^2 ))=∣cosh(x+C)∣  Now, cosh(x+C)≥1>0 ∀x,C∈R.  ∴ ∣cosh(x+C)∣=cosh(x+C)  ⇒(√(1+((df/dx))^2  ))=cosh(x+C)  Let I=2π∫_a ^b f(√(1+((df/dx))^2 ))dx=2π∫_a ^b cosh(x+C)×cosh(x+C)dx  I=2π∫_a ^b cosh^2 (x+C)dx  Now, let Q=π∫_a ^b f^2 dx=π∫_a ^b cosh^2 (x+C)dx  ∴ I=2Q⇒Q≠I if f=cosh(x+C).  We deduce I≠Q also if f=cosh(C−x).
abfdx=ab1+(dfdx)2dx(area=arclengthforx[a,b])ba(f1+(dfdx)2)dx=0..(1)Ifba,(1)istrueifff1+(dfdx)2=0.f2=1+(dfdx)2f21=(dfdx)2dfdx=±f21(f∣>1)dff21=±dxLetu=cosh1(f/a)a0coshu=f/aDifferentiatingwrtfsinhu×u=1/au=1asinhu=1acosh2u1u=1af2a21=1a×1af2a2=1f2a2Leta=1,dudf=1f21u=dff21cosh1f=±x+Cf=cosh(C±x)C,xRf:[a,b]RLetf=cosh(C+x).dfdx=sinh(C+x)Missing \left or extra \right1+(dfdx)2=∣cosh(x+C)Now,cosh(x+C)1>0x,CR.cosh(x+C)∣=cosh(x+C)1+(dfdx)2=cosh(x+C)LetI=2πabf1+(dfdx)2dx=2πabcosh(x+C)×cosh(x+C)dxI=2πbacosh2(x+C)dxNow,letQ=πabf2dx=πabcosh2(x+C)dxI=2QQIiff=cosh(x+C).WededuceIQalsoiff=cosh(Cx).

Leave a Reply

Your email address will not be published. Required fields are marked *