Question Number 2362 by 123456 last updated on 18/Nov/15

Commented by Rasheed Soomro last updated on 20/Nov/15

Commented by Rasheed Soomro last updated on 20/Nov/15

Commented by Rasheed Soomro last updated on 21/Nov/15

Answered by Rasheed Soomro last updated on 21/Nov/15
![f:C→C,(a,b)∈R^2 ,a<b f(z−a)=f(b−z)sin ((zπ)/(b−a)) f(z)=z^2 ,ℜ(z)≥((a+b)/2) f(z)=0,z=? −−−−−−−−−−−−−−−−−−−−− f(z−a)=f(b−z)sin ((zπ)/(b−a)) is true for any real a,b with a<b Let a=0,then b>0 f(z−a)=f(b−z)sin ((zπ)/(b−a)) ⇒f(z)=f(b−z)sin ((zπ)/b) ⇒ f(b−z)=f(b−b−z^(−) )sin ((zπ)/b) =f(z)sin ((zπ)/b) f(z)=f(z)sin ((zπ)/b)sin ((zπ)/b) f(z)−f(z)sin^2 ((zπ)/b)=0 f(z)(1−sin^2 ((zπ)/b))=0 f(z)(1−sin((zπ)/b))(1+sin((zπ)/b))=0 f(z)=0 ∣ sin((πz)/b) =1 ∣ sin ((πz)/b)=−1 ∣ ((πz)/b)=sin^(−1) (1) ∣ ((πz)/b)=sin^(−1) (−1) ∣ ((πz)/b)=(π/2) ∣ ((πz)/b)=((3π)/2) ∣ z=(b/2) ∣ z=((3b)/2) for a=0 ,b>0 ∣ ℜ(z)≥ ((a+b)/2)=((0+b)/2) ∣ (b/2)≥(b/2) Condition satisfied for z=(b/2) ∣ ((3b)/2)≥(b/2) as well as for z=((3b)/2) −−−−−−−−−−−−− Let b=0 [a<0] f(z−a)=f(b−z)sin ((zπ)/(b−a)) ⇒f(z−a)=f(−z)sin ((zπ)/(−a)) ⇒f(z−a)=−f(−z)sin ((zπ)/a) f(−z) =−((f(z−a))/(sin ((zπ)/a))) f(z−a)=f(−a−z^(−) )=−((f(a−z−a))/(sin (((a−z)π)/a))) =−((f(−z))/(sin (((a−z)π)/a))) f(−z) =−((−((f(−z))/(sin (((a−z)π)/a))))/(sin ((zπ)/a))) f(−z)=((f(−z))/(sin (((a−z)π)/a).sin ((zπ)/a))) f(−z)−((f(−z))/(sin (((a−z)π)/a).sin ((zπ)/a)))=0 f(−z)[1−(1/(sin (((a−z)π)/a).sin ((zπ)/a)))]=0 f(−z)=0 ∣ (1/(sin (((a−z)π)/a).sin ((zπ)/a)))=1 ∣ sin (((a−z)π)/a).sin ((zπ)/a)=1 ∣ (1/2){cos((((a−z−z)π)/a))−cos((((a−z+z)π)/a)}=1 ∣ (1/2){cos((((a−2z)π)/a))−cos((((a)π)/a)}=1 ∣ (1/2){cos((((a−2z)π)/a))−cos(π)}=1 ∣ cos((((a−2z)π)/a))+1=2 ∣ cos((((a−2z)π)/a))=1 ∣ (((a−2z)π)/a)=cos^(−1) (1)=0 ∣ a−2z=0⇒z=(a/2) [Satisfy the condition ℜ(z)≥((a+b)/2)] [b=0](https://www.tinkutara.com/question/Q2459.png)
Commented by Rasheed Soomro last updated on 21/Nov/15

Answered by Rasheed Soomro last updated on 22/Nov/15
