Menu Close

f-C-C-z-0-C-such-that-f-z-f-z-0-z-z-0-f-z-z-0-does-lim-z-z-0-f-z-f-z-0-




Question Number 1339 by 123456 last updated on 24/Jul/15
f:C→C,z_0 ∈C such that  f(z)−f(z_0 )=(z−z_0 )f(z−z_0 )  does lim_(z→z_0 ) f(z)=f(z_0 )?
f:CC,z0Csuchthatf(z)f(z0)=(zz0)f(zz0)doeslimzz0f(z)=f(z0)?
Commented by 123456 last updated on 24/Jul/15
f′(z_0 )=^? f(0)
f(z0)=?f(0)
Commented by prakash jain last updated on 24/Jul/15
lim_(z→z_0 )  ((f(z)−f(z_0 ))/(z−z_0 ))=f ′(z_0 )=lim_(z→z_0 ) f(z−z_0 )=f(0)
limzz0f(z)f(z0)zz0=f(z0)=limzz0f(zz0)=f(0)
Commented by 112358 last updated on 24/Jul/15
f(z)=(z−z_0 )f(z−z_0 )+f(z_0 )  ∴lim_(z→z_0 ) f(z)=lim_(z→z_0 ) [(z−z_0 )f(z−z_0 )+f(z_0 )]                      =lim_(z→z_0 ) (z−z_0 )lim_(z→z_0 ) f(z−z_0 )+lim_(z→z_0 ) f(z_0 )  Let z=a+bi,z_0 =c+di    where a,b,c,d∈R  ⇒z−z_0 =(a−c)+(b−d)i  ∴lim_(z→z_0 ) (z−z_0 )=lim_(a→c) (a−c)+ilim_(b→d) (b−d)=0+0i=0∈C  lim_(z→z_0 ) f(z−z_0 )=f(0)∈C       lim_(z→z_0 ) f(z_0 )=f(z_0 )∈C   (lim_(x→x_0 ) c=c)  ∴lim_(z→z_0 ) f(z)=f(z_0 )∈C
f(z)=(zz0)f(zz0)+f(z0)limzz0f(z)=limzz0[(zz0)f(zz0)+f(z0)]=limzz0(zz0)limzz0f(zz0)+limzz0f(z0)Letz=a+bi,z0=c+diwherea,b,c,dRzz0=(ac)+(bd)ilimzz0(zz0)=limac(ac)+ilimbd(bd)=0+0i=0Climzz0f(zz0)=f(0)Climzz0f(z0)=f(z0)C(limxx0c=c)limzz0f(z)=f(z0)C

Leave a Reply

Your email address will not be published. Required fields are marked *