Question Number 2035 by Rasheed Soomro last updated on 31/Oct/15

Commented by Yozzi last updated on 31/Oct/15

Commented by 123456 last updated on 31/Oct/15
![f•f^(−1) =f^(−1) •f=I (if f is invertible) f[f′(x)]=f′[f(x)] f′(x)=f^(−1) {f′[f(x)]} f(x)=(f′)^(−1) {f[f′(x)]}](https://www.tinkutara.com/question/Q2042.png)
Answered by 123456 last updated on 31/Oct/15
![f(x)=a^x f′(x)=a^x ln a (a>0) f[f′(x)]=a^(a^x ln a) f′[f(x)]=a^a^x ln a a^(a^x ln a) =a^a^x ln a a^(a^x (ln a−1)) =ln a (a^a^x ≠0) a^x (ln a−1)=log_a ln a (ln a>0⇒a>1) a^x =((log_a ln a)/(ln a−1)) (ln a≠1⇒a≠e) x=log_a (((log_a ln a)/(ln a−1))) −−−−−−−−−− a=e⇒ln a=1⇒log_a ln a=0 f(x)=e^x is a solution](https://www.tinkutara.com/question/Q2039.png)
Answered by prakash jain last updated on 31/Oct/15

Commented by prakash jain last updated on 31/Oct/15

Commented by Rasheed Soomro last updated on 01/Nov/15
