Menu Close

f-is-an-endomorphism-of-V-such-that-f-f-Id-V-1-Show-that-f-is-an-isomorphism-of-V-and-express-f-1-in-function-of-f-2-show-that-0-is-the-one-invariant-vector-by-f-3-Given-u-0-and-




Question Number 142236 by mathocean1 last updated on 28/May/21
f is an endomorphism of V such  that f○f=−Id_V  .  1. Show that f is an isomorphism of  V and express f^(−1)  in function of f.  2. show that 0^→  is the one invariant  vector by f.  3. Given u^→ ≠0^→  and u^→  ∈ V.  a. Show that (u^→ ; f(u^→ )) is a base of V.  b. Write the matrix of f in base  (u^→ ; f(u^→ )).
fisanendomorphismofVsuchthatff=IdV.1.ShowthatfisanisomorphismofVandexpressf1infunctionoff.2.showthat0istheoneinvariantvectorbyf.3.Givenu0anduV.a.Showthat(u;f(u))isabaseofV.b.Writethematrixoffinbase(u;f(u)).
Answered by mindispower last updated on 28/May/21
fo(−f)=Idv=(−f)o(f)=idv  f^− =−f  2 let u invariant ⇒f(u)=u⇒fof(u)=f(u)=u  ⇒−u=u⇒2u=0⇒u=0^→   let a,b∈R^2 ∣au+bf(u)=0....×a  af(u)−bu=0....×−b  ⇒(b^2 +a^2 )u=0⇒a=b=0    linear independenent  generatrice have we dim(V)=2...?
fo(f)=Idv=(f)o(f)=idvf=f2letuinvariantf(u)=ufof(u)=f(u)=uu=u2u=0u=0leta,bR2au+bf(u)=0.×aaf(u)bu=0.×b(b2+a2)u=0a=b=0linearindependenentgeneratricehavewedim(V)=2?
Commented by mathocean1 last updated on 28/May/21
thank you sir.  yes dim(V)=2.  what could be the matrix..
thankyousir.yesdim(V)=2.whatcouldbethematrix..
Commented by mindispower last updated on 28/May/21
 (((0 −1)),((1     0)) )
(0110)
Commented by mathocean1 last updated on 29/May/21
Thanks
Thanks
Commented by mindispower last updated on 29/May/21
pleasur
pleasur
Answered by mindispower last updated on 28/May/21
isomoprhisme is bijection of[morphisme  let (u,v)∈V^2 ∣f(u)=f(v)⇒fof(u)=fof(v)⇒−u=−v  ⇒u=v⇒f injective  let u∈V ,we have  fof(u)=−u  ⇒fof(−u)=u⇒f(f(−u))=u let Y=f(−u)  ⇒∀u∈V ∃y=f(−u)∣f(y)=u⇒f surjective  so f ismorphisme
isomoprhismeisbijectionof[morphismelet(u,v)V2f(u)=f(v)fof(u)=fof(v)u=vu=vfinjectiveletuV,wehavefof(u)=ufof(u)=uf(f(u))=uletY=f(u)uVy=f(u)f(y)=ufsurjectivesofismorphisme

Leave a Reply

Your email address will not be published. Required fields are marked *