Menu Close

f-is-defined-in-0-f-0-ln2-f-x-x-2x-e-t-t-dt-for-x-gt-0-1-Given-0-f-x-e-x-e-2x-x-Calcule-the-lim-f-x-at-0-and-2-Calculate-f-x-give-its-var




Question Number 134753 by mathocean1 last updated on 06/Mar/21
f is defined in [0; +∞[.   { ( ),(),((f(0)=ln2)) :}f(x)=∫_x ^(2x)  (e^(−t) /t)dt  for x>0    1) Given 0≤f(x≤((e^(−x) −e^(−2x) )/x).  Calcule the lim f(x) at 0 and +∞.  2) Calculate f ′(x) , give its variation  and plot its curve.
$${f}\:{is}\:{defined}\:{in}\:\left[\mathrm{0};\:+\infty\left[.\right.\right. \\ $$$$\begin{cases}{\:}\\{}\\{{f}\left(\mathrm{0}\right)={ln}\mathrm{2}}\end{cases}{f}\left({x}\right)=\int_{{x}} ^{\mathrm{2}{x}} \:\frac{{e}^{−{t}} }{{t}}{dt}\:\:{for}\:{x}>\mathrm{0} \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:{Given}\:\mathrm{0}\leqslant{f}\left({x}\leqslant\frac{{e}^{−{x}} −{e}^{−\mathrm{2}{x}} }{{x}}.\right. \\ $$$${Calcule}\:{the}\:{lim}\:{f}\left({x}\right)\:{at}\:\mathrm{0}\:{and}\:+\infty. \\ $$$$\left.\mathrm{2}\right)\:{Calculate}\:{f}\:'\left({x}\right)\:,\:{give}\:{its}\:{variation} \\ $$$${and}\:{plot}\:{its}\:{curve}. \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *