Menu Close

f-n-0-1-0-1-g-0-1-0-1-f-n-1-x-g-f-n-x-f-n-g-x-f-0-x-x-f-4-x-g-x-x-2-f-2-2-




Question Number 2253 by 123456 last updated on 11/Nov/15
f_n :[0,1]→[0,1],g:[0,1]→[0,1]  f_(n+1) (x)=g[f_n (x)]+f_n [g(x)]  f_0 (x)=x  f_4 (x)=?  g(x)=x^2 ,f_2 (2)=??
fn:[0,1][0,1],g:[0,1][0,1]fn+1(x)=g[fn(x)]+fn[g(x)]f0(x)=xf4(x)=?g(x)=x2,f2(2)=??
Commented by RasheedAhmad last updated on 12/Nov/15
Definition g(x)=x^2  only for f_2 (2) ?
Definitiong(x)=x2onlyforf2(2)?
Answered by prakash jain last updated on 12/Nov/15
f_1 (x)=g[f_0 (x)]+f_0 [g(x)]=g(x)+g(x)=2g(x)  f_1 (x)=2x^2   f_2 (x)=g(2x^2 )+f_1 (x^2 )=4x^4 +2x^4 =6x^4   f_3 (x)=(6x^4 )^2 +6x^8 =42x^8   f_4 (x)=(42x^8 )^2 +42(x^2 )^8 =42×43x^(16)
f1(x)=g[f0(x)]+f0[g(x)]=g(x)+g(x)=2g(x)f1(x)=2x2f2(x)=g(2x2)+f1(x2)=4x4+2x4=6x4f3(x)=(6x4)2+6x8=42x8f4(x)=(42x8)2+42(x2)8=42×43x16

Leave a Reply

Your email address will not be published. Required fields are marked *