Menu Close

f-n-1-n-n-f-n-1-f-1-1-Evaluate-S-i-1-m-f-i-




Question Number 2589 by Filup last updated on 23/Nov/15
f_n =(1/n)(n+f_(n−1) )  f_1 =1    Evaluate:  S=Σ_(i=1) ^m f_i
fn=1n(n+fn1)f1=1Evaluate:S=mi=1fi
Commented by 123456 last updated on 23/Nov/15
?????
?????
Commented by Filup last updated on 23/Nov/15
my working was incorrect i belive  :( oh well
myworkingwasincorrectibelive:(ohwell
Commented by Filup last updated on 23/Nov/15
Oh. It seems I was over thinking.
Oh.ItseemsIwasoverthinking.
Answered by 123456 last updated on 23/Nov/15
f_n =(1/n)(n+f_(n−1) )=1+(f_(n−1) /n),n≠0  f_(n−1) =n(f_n −1)  f_0 =1(f_1 −1)=0  f_1 =1+(f_0 /1)=1  f_2 =1+(f_1 /2)=1+(1/2)=(3/2)  f_3 =1+(f_2 /3)=1+(1/2)=(3/2)=1+(1/3)+(1/6)  f_4 =1+(f_3 /4)=1+(3/8)=((11)/8)=1+(1/4)+(1/(12))+(1/(4!))  f_5 =1+(f_4 /5)=1+((11)/(40))=((51)/(40))=1+(1/5)+(1/(20))+(1/(60))+(1/(5!))  −−−−continue−−−−−
fn=1n(n+fn1)=1+fn1n,n0fn1=n(fn1)f0=1(f11)=0f1=1+f01=1f2=1+f12=1+12=32f3=1+f23=1+12=32=1+13+16f4=1+f34=1+38=118=1+14+112+14!f5=1+f45=1+1140=5140=1+15+120+160+15!continue
Commented by 123456 last updated on 23/Nov/15
f_2 =1+(f_1 /2)  f_3 =1+(f_2 /3)=1+(1/3)+(f_1 /6)  f_4 =1+(f_3 /4)=1+(1/4)+(1/(12))+(f_1 /(4!))  f_5 =1+(f_4 /5)=1+(1/5)+(1/(20))+(1/(60))+(f_1 /(5!))  ⋮  f_n =S_n +(f_1 /(n!))     (n∈N^∗ )  S_n =1+(S_(n−1) /n),S_1 =0,S_2 =1,...
f2=1+f12f3=1+f23=1+13+f16f4=1+f34=1+14+112+f14!f5=1+f45=1+15+120+160+f15!fn=Sn+f1n!(nN)Sn=1+Sn1n,S1=0,S2=1,
Answered by prakash jain last updated on 23/Nov/15
f_n =1+(1/n)+(1/(n(n−1)))+...+(1/(n!))  f_n =(1/(n!))(n!+(n−1)!+(n−2)!+..+1)  f_i =Σ_(k=1) ^i ((k!)/(i!))  S=Σ_(i=1) ^n  Σ_(k=1) ^i ((k!)/(i!))  I think a closed form expression for sum  may be possible in terms of gamma function.
fn=1+1n+1n(n1)++1n!fn=1n!(n!+(n1)!+(n2)!+..+1)fi=ik=1k!i!S=ni=1ik=1k!i!Ithinkaclosedformexpressionforsummaybepossibleintermsofgammafunction.

Leave a Reply

Your email address will not be published. Required fields are marked *