Menu Close

f-n-1-x-f-n-x-n-1-n-f-0-x-1-f-5-x-




Question Number 377 by 123456 last updated on 25/Jan/15
f_(n+1) (x)=((f_n (x))/(n+1))+n  f_0 (x)=1  f_5 (x)=?
fn+1(x)=fn(x)n+1+nf0(x)=1f5(x)=?
Answered by prakash jain last updated on 25/Dec/14
f_0 (x)=1  f_1 (x)=(1/1)+0=1  f_2 (x)=(1/2)+1=(3/2)  f_3 (x)=((3/2)/(2+1))+2=(1/2)+2=(5/2)  f_4 (x)=((3/2)/(3+1))+3=(3/8)+3=((27)/8)  f_5 (x)=(((27)/8)/(4+1))+4=((27)/(40))+4=((27+160)/(40))=((187)/(40))
f0(x)=1f1(x)=11+0=1f2(x)=12+1=32f3(x)=322+1+2=12+2=52f4(x)=323+1+3=38+3=278f5(x)=2784+1+4=2740+4=27+16040=18740