Menu Close

f-n-1-x-f-n-x-x-n-x-n-f-0-x-1-f-5-x-f-4-2x-0-x-




Question Number 1873 by 123456 last updated on 19/Oct/15
f_(n+1) (x)=f_n (x)(x−n)(x+n)  f_0 (x)=1  f_5 (x)=?  f_4 (2x)=0,x=?
fn+1(x)=fn(x)(xn)(x+n)f0(x)=1f5(x)=?f4(2x)=0,x=?
Answered by Rasheed Soomro last updated on 19/Oct/15
f_(n+1) (x)=f_n (x)(x−n)(x+n)...............I  f_0 (x)=1  f_5 (x)=?  f_4 (2x)=0,x=?  −−−−−−−−−−−−−−−  •Let n=0, substuting in I  f_1 (x)=f_0 (x)(x−0)(x+0)=x^2   •Let n=1,substituting in I  f_2 (x)=f_1 (x)(x−1)(x+1)             =x^2 (x−1)(x+1)  •Let n=2 ,substituting in I  f_3 (x)=f_2 (x)(x−2)(x+2)             =x^2 (x−1)(x+1)(x−2)(x+2)             =x^2 (x^2 −1)(x^2 −4)  •Let n=3 , substituting in I  f_4 (x)=f_3 (x)(x−3)(x+3)             =x^2 (x^2 −1)(x^2 −4)(x^2 −9)  f_4 (2x)=4x^2 (4x^2 −1)(4x^2 −4)(4x^2 −9)=0  4x^2 =0 ∣ 4x^2 −1=0 ∣ 4x^2 −4=0 ∣ 4x^2 −9=0  x=0 ∣ x=±(1/2) ∣ x=±1 ∣ x=±(3/2)....................A  •Let n=4 , substituting in I   f_5 (x)=f_4 (x)(x−4)(x+4)             =x^2 (x^2 −1)(x^2 −4)(x^2 −9)(x^2 −16)..........B  A and B are answers.
fn+1(x)=fn(x)(xn)(x+n)If0(x)=1f5(x)=?f4(2x)=0,x=?Letn=0,substutinginIf1(x)=f0(x)(x0)(x+0)=x2Letn=1,substitutinginIf2(x)=f1(x)(x1)(x+1)=x2(x1)(x+1)Letn=2,substitutinginIf3(x)=f2(x)(x2)(x+2)=x2(x1)(x+1)(x2)(x+2)=x2(x21)(x24)Letn=3,substitutinginIf4(x)=f3(x)(x3)(x+3)=x2(x21)(x24)(x29)f4(2x)=4x2(4x21)(4x24)(4x29)=04x2=04x21=04x24=04x29=0x=0x=±12x=±1x=±32..ALetn=4,substitutinginIf5(x)=f4(x)(x4)(x+4)=x2(x21)(x24)(x29)(x216).BAandBareanswers.

Leave a Reply

Your email address will not be published. Required fields are marked *