Menu Close

f-n-x-1-x-n-nx-n-N-x-R-x-0-lim-n-f-n-x-




Question Number 585 by 123456 last updated on 02/Feb/15
f_n (x)=(1+(x/n))^(nx) ,n∈N^∗ ,x∈R,x≥0  lim_(n→+∞)  f_n (x)=
fn(x)=(1+xn)nx,nN,xR,x0limn+fn(x)=
Answered by prakash jain last updated on 02/Feb/15
y=(1+(x/n))^(nx)   ln y=nxln (1+(x/n))=((xln (1+(x/n)))/(1/n))  lim_(n→∞) ln y=lim_(n→∞) x∙(((−(x/n^2 ))/(1+(x/n)))/(−(1/n^2 )))=(x^2 /(1+(x/n)))=x^2   lim_(n→∞) f_n (x)=e^x^2
y=(1+xn)nxlny=nxln(1+xn)=xln(1+xn)1nlimlnny=limnxxn21+xn1n2=x21+xn=x2limnfn(x)=ex2

Leave a Reply

Your email address will not be published. Required fields are marked *