Menu Close

f-nx-f-x-n-f-x-f-0-0-f-x-




Question Number 3789 by 123456 last updated on 21/Dec/15
f(nx)=f(x+n)−f(x)  f(0)=0  f(x)=?
f(nx)=f(x+n)f(x)f(0)=0f(x)=?
Commented by Rasheed Soomro last updated on 21/Dec/15
f(nx)=f(x+n)−f(x)  −−−−  x=0  f(0)=f(n)−f(0)  f(n)=0  n  is  an  arbitrary constant  So  f(x)=0    ???
f(nx)=f(x+n)f(x)x=0f(0)=f(n)f(0)f(n)=0nisanarbitraryconstantSof(x)=0???
Commented by Rasheed Soomro last updated on 21/Dec/15
f(nx)=f(x+n)−f(x)  n=1  f(x)=f(1+n)−f(x)  f(x)=((f(1+x))/2)  x=0 in above  f(0)=((f(1+0))/2)=0  f(1)=0  f(1)=((f(2))/2)=0  f(2)=0  f(3)=0  ⋮  f(x)=0
f(nx)=f(x+n)f(x)n=1f(x)=f(1+n)f(x)f(x)=f(1+x)2x=0inabovef(0)=f(1+0)2=0f(1)=0f(1)=f(2)2=0f(2)=0f(3)=0f(x)=0
Commented by 123456 last updated on 21/Dec/15
f(x)=((f(x+1))/2)
f(x)=f(x+1)2
Commented by prakash jain last updated on 21/Dec/15
n cannot be treated as variable since  it is a constant for all x.  for example  g(x)=x−n  g(n)=0 but g(x)≠0
ncannotbetreatedasvariablesinceitisaconstantforallx.forexampleg(x)=xng(n)=0butg(x)0
Commented by Rasheed Soomro last updated on 21/Dec/15
ThankS!
ThankS!
Commented by Rasheed Soomro last updated on 21/Dec/15
for x=0  ,  f(nx)=f(x+n)−f(x)⇒f(n)=0    What is meant by  definition  f(n)=0  Couldn′t we use this definition for  n=1,n=4,n=anyvalue  Couldn′t we say  f(6)=0, f(anyvalue)=0  If  yes then  n is just like a variable?
forx=0,f(nx)=f(x+n)f(x)f(n)=0Whatismeantbydefinitionf(n)=0Couldntweusethisdefinitionforn=1,n=4,n=anyvalueCouldntwesayf(6)=0,f(anyvalue)=0Ifyesthennisjustlikeavariable?
Answered by Rasheed Soomro last updated on 21/Dec/15
f(nx)=f(x+n)−f(x)...................(i)  f(0)=0  f(x)=?  −−−−−−−−  n=1  in   (i)  f(x)=f(x+1)−f(x)⇒2f(x)=f(x+1)  x→x−1 in above  f(x)=2f(x−1)  f(0)=0  [given]  f(1)=2f(0)=2(0)=0  f(2)=2f(1)=0  f(3)=2f(2)=0    f(x)=0  This can be proved by mathematical induction.
f(nx)=f(x+n)f(x).(i)f(0)=0f(x)=?n=1in(i)f(x)=f(x+1)f(x)2f(x)=f(x+1)xx1inabovef(x)=2f(x1)f(0)=0[given]f(1)=2f(0)=2(0)=0f(2)=2f(1)=0f(3)=2f(2)=0f(x)=0Thiscanbeprovedbymathematicalinduction.

Leave a Reply

Your email address will not be published. Required fields are marked *