Menu Close

f-R-R-continuous-such-that-x-R-f-x-f-f-x-1-f-2004-2003-f-1999-




Question Number 950 by 123456 last updated on 06/May/15
f:R→R,continuous such that ∀x∈R,f(x)f[f(x)]=1,f(2004)=2003,f(1999)=?
f:RR,continuoussuchthatxR,f(x)f[f(x)]=1,f(2004)=2003,f(1999)=?
Commented by 123456 last updated on 06/May/15
f(2004)f[f(2004)]=2003f(2003)=1⇔f(2003)=(1/(2003))  f(2003)f[f(2003)]=(1/(2003))f((1/(2003)))=1⇔f((1/(2003)))=2003=f(2004)  f((1/(2003)))f[f((1/(2003)))]=2003f(2003)=1
f(2004)f[f(2004)]=2003f(2003)=1f(2003)=12003f(2003)f[f(2003)]=12003f(12003)=1f(12003)=2003=f(2004)f(12003)f[f(12003)]=2003f(2003)=1
Commented by 123456 last updated on 06/May/15
f(x)f[f(x)]=1  f[f(x)]f{f[f(x)]}=1  f(x)=f{f[f(x)]}∨f[f(x)]=0  ∃x,f(x)=0⇒f(x)f[f(x)]=1⇒0f(0)=1  f(x)=f{f[f(x)]}  f(2004)=f{f[f(2004)]}=2003  f(x)=y  f(x)f[f(x)]=1  yf(y)=1  f(y)=(1/y)
f(x)f[f(x)]=1f[f(x)]f{f[f(x)]}=1f(x)=f{f[f(x)]}f[f(x)]=0x,f(x)=0f(x)f[f(x)]=10f(0)=1f(x)=f{f[f(x)]}f(2004)=f{f[f(2004)]}=2003f(x)=yf(x)f[f(x)]=1yf(y)=1f(y)=1y
Answered by prakash jain last updated on 06/May/15
f(2003)=(1/(2003)) and f(2004)=2003  Given that f(x) is continous:  ∃x such that f(x)=1999  Since f(f(x))=(1/(f(x)))  put f(x)=1999  f(1999)=(1/(1999))
f(2003)=12003andf(2004)=2003Giventhatf(x)iscontinous:xsuchthatf(x)=1999Sincef(f(x))=1f(x)putf(x)=1999f(1999)=11999

Leave a Reply

Your email address will not be published. Required fields are marked *