Question Number 3653 by prakash jain last updated on 17/Dec/15
$${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({x}−{f}\left({y}\right)\right)={f}\left({f}\left({y}\right)\right)+{xf}\left({y}\right)+{f}\left({x}\right)−\mathrm{1} \\ $$$${f}\left({x}\right)=? \\ $$
Commented by Rasheed Soomro last updated on 18/Dec/15
$${f}\left({x}−{f}\left({y}\right)\right)={f}\left({f}\left({y}\right)\right)+{xf}\left({y}\right)+{f}\left({x}\right)−\mathrm{1}…………….\left({i}\right) \\ $$$$−−−−−− \\ $$$${x}=\mathrm{0}\:{in}\:\left({i}\right) \\ $$$${f}\left(\mathrm{0}−{f}\left({y}\right)\right)={f}\left({f}\left({y}\right)\right)+\mathrm{0}{f}\left({y}\right)+{f}\left(\mathrm{0}\right)−\mathrm{1} \\ $$$${f}\left(\:−{f}\left({y}\right)\:\right)={f}\left(\:{f}\left({y}\right)\:\right)+{f}\left(\mathrm{0}\right)−\mathrm{1} \\ $$$$−−−−−−− \\ $$$${y}=\mathrm{0}\:{in}\:\left({i}\right) \\ $$$${f}\left({x}−{f}\left(\mathrm{0}\right)\right)={f}\left({f}\left(\mathrm{0}\right)\right)+{xf}\left(\mathrm{0}\right)+{f}\left({x}\right)−\mathrm{1} \\ $$$${Let}\:{y}={x} \\ $$$${f}\left({x}−{f}\left({x}\right)\right)={f}\left({f}\left({x}\right)\right)+{xf}\left({x}\right)+{f}\left({x}\right)−\mathrm{1} \\ $$$${f}\left({x}−{f}\left({x}\right)\right)={f}\left({f}\left({x}\right)\right)+\left({x}+\mathrm{1}\right){f}\left({x}\right)−\mathrm{1} \\ $$$${f}\left({x}−{f}\left({x}\right)\right)−{f}\left({f}\left({x}\right)\right)+\mathrm{1}=\left({x}+\mathrm{1}\right){f}\left({x}\right) \\ $$$${x}\leftrightarrow{y}\:\:{in}\:\:\left({i}\right) \\ $$$${f}\left({y}−{f}\left({x}\right)\right)={f}\left({f}\left({x}\right)\right)+{yf}\left({x}\right)+{f}\left({y}\right)−\mathrm{1}…………….\left({ii}\right) \\ $$
Commented by prakash jain last updated on 18/Dec/15
$${f}\left({y}\right)={z} \\ $$$${f}\left({x}−{z}\right)={f}\left({z}\right)+{xz}+{f}\left({x}\right)−\mathrm{1}\:\:\:\:…\left({i}\right) \\ $$$${assume}\:{f}\left({x}\right)=\mathrm{0}\:{for}\:{some}\:{x}\:{then}\:{we}\:{can}\:{try}\:{z}=\mathrm{0} \\ $$$${z}=\mathrm{0},\:{x}=\mathrm{0} \\ $$$${f}\left({x}\right)={f}\left(\mathrm{0}\right)+{f}\left({x}\right)−\mathrm{1} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${put}\:{x}=\mathrm{0} \\ $$$${f}\left(−{z}\right)={f}\left({z}\right)\:\:\:\:{even}\:{function} \\ $$$${continue} \\ $$