Question Number 316 by 123456 last updated on 25/Jan/15
$${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${g}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({x}\right)=\begin{vmatrix}{{x}}&{{g}\left({x}\right)}\\{{g}\left(−{x}\right)}&{−{x}}\end{vmatrix} \\ $$$${g}\left({x}\right)=\begin{vmatrix}{{f}\left({x}\right)}&{{x}}\\{−{x}}&{{f}\left(−{x}\right)}\end{vmatrix} \\ $$
Answered by prakash jain last updated on 21/Dec/14
$${f}\left({x}\right)=−{x}^{\mathrm{2}} −{g}\left({x}\right){g}\left(−{x}\right)\:\:\:\:\:…\left({i}\right) \\ $$$${g}\left({x}\right)={f}\left({x}\right){f}\left(−{x}\right)+{x}^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:…\left({ii}\right) \\ $$$${f}\left(−{x}\right)={f}\left({x}\right) \\ $$$${g}\left(−{x}\right)={g}\left({x}\right) \\ $$$${f}\left({x}\right)=−{x}^{\mathrm{2}} −\left[{g}\left({x}\right)\right]^{\mathrm{2}} \\ $$$${g}\left({x}\right)={x}^{\mathrm{2}} +\left[{f}\left({x}\right)\right]^{\mathrm{2}} \\ $$$$\left.{f}\left({x}\right)+{g}\left({x}\right)=\left[{f}\left({x}\right)\right]^{\mathrm{2}} −\left[{g}\left({x}\right)\right]^{\mathrm{2}} =\left[{f}\left({x}\right)+{g}\left({x}\right)\right]\left[{f}\left({x}\right)−{g}\left({x}\right)\right)\right] \\ $$$${f}\left({x}\right)−{g}\left({x}\right)=\mathrm{1} \\ $$$${f}\left({x}\right)=\mathrm{1}+{g}\left({x}\right) \\ $$$$\mathrm{1}+{g}\left({x}\right)=−{x}^{\mathrm{2}} −\left[{g}\left({x}\right)\right]^{\mathrm{2}} \\ $$$$\left[{g}\left({x}\right)\right]^{\mathrm{2}} +{g}\left({x}\right)+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${g}\left({x}\right)=\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}−\mathrm{4}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}}{\mathrm{2}}=\frac{−\mathrm{1}\pm\sqrt{−{x}^{\mathrm{2}} −\mathrm{3}}}{\mathrm{2}} \\ $$$${f}\left({x}\right)=\mathrm{1}+{g}\left({x}\right)=\frac{\mathrm{1}\pm\sqrt{−{x}^{\mathrm{2}} −\mathrm{3}}}{\mathrm{2}} \\ $$$$\mathrm{The}\:\mathrm{solution}\:\mathrm{pair}\:\mathrm{meets}\:\mathrm{all}\:\mathrm{condition}\:\mathrm{except} \\ $$$${f}\left({x}\right)\:\mathrm{and}\:{g}\left({x}\right)\:\mathrm{are}\:\mathrm{not}\:\mathrm{real}\:\mathrm{for}\:\mathrm{any}\:\mathrm{real}\:{x}. \\ $$$$\mathrm{So}\:\mathrm{given}\:\mathrm{conditons}\:\mathrm{has}\:\mathrm{no}\:\mathrm{solution}. \\ $$