Question Number 1125 by 123456 last updated on 18/Jun/15
$${f}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${g}:\mathbb{R}\rightarrow\mathbb{R} \\ $$$${f}\left({x}+{y}\right)={f}\left({x}\right)+{g}\left({y}\right) \\ $$$${g}\left({xy}\right)={f}\left({x}\right){g}\left({y}\right) \\ $$$${f}\left({x}\right)=? \\ $$$${g}\left({x}\right)=? \\ $$
Commented by 123456 last updated on 18/Jun/15
$${f}\left(\mathrm{0}\right)={f}\left(\mathrm{0}\right)+{g}\left(\mathrm{0}\right)\Rightarrow{g}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${f}\left({x}\right)={f}\left({x}\right)+{g}\left(\mathrm{0}\right)\Rightarrow{g}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${g}\left(\mathrm{0}\right)={f}\left(\mathrm{0}\right){g}\left(\mathrm{0}\right)\Rightarrow{f}\left(\mathrm{0}\right)=\mathrm{1}\vee{g}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${g}\left(\mathrm{0}\right)={f}\left({x}\right){g}\left(\mathrm{0}\right)\Rightarrow{f}\left({x}\right)=\mathrm{1}\vee{g}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${g}\left(\mathrm{1}\right)={f}\left(\mathrm{1}\right){g}\left(\mathrm{1}\right)\Rightarrow{f}\left(\mathrm{1}\right)=\mathrm{1}\vee{g}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$${g}\left({x}\right)={f}\left(\mathrm{1}\right){g}\left({x}\right)\Rightarrow{f}\left(\mathrm{1}\right)=\mathrm{1}\vee{g}\left({x}\right)=\mathrm{0} \\ $$$${g}\left(−\mathrm{1}\right)={f}\left(\mathrm{1}\right){g}\left(−\mathrm{1}\right)\Rightarrow{f}\left(\mathrm{1}\right)=\mathrm{1}\vee{g}\left(−\mathrm{1}\right)=\mathrm{0} \\ $$
Answered by prakash jain last updated on 20/Jun/15
$${g}\left({x}\right)={f}\left({x}\right){g}\left(\mathrm{1}\right) \\ $$$${g}\left(\mathrm{1}\right)=\mathrm{1}/{k} \\ $$$${f}\left({x}\right)={kg}\left({x}\right) \\ $$$${g}\left({xy}\right)={kg}\left({x}\right){g}\left({y}\right) \\ $$$${g}\left({x}\right)={x},\:{k}=\mathrm{1} \\ $$$${f}\left({x}\right)={kg}\left({x}\right)={x} \\ $$
Commented by prakash jain last updated on 20/Jun/15
$${g}\left({xy}\right)=\frac{{g}\left({x}\right){g}\left({y}\right)}{{g}\left(\mathrm{1}\right)}\Rightarrow{g}\left({x}\right)={x}^{{r}} ,\:{g}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${f}\left({x}\right)={x}^{{r}} \\ $$$${f}\left({x}+{y}\right)={f}\left({x}\right)+{g}\left({y}\right) \\ $$$$\left({x}+{y}\right)^{{r}} ={x}^{{r}} +{y}^{{r}} \Rightarrow{r}=\mathrm{1} \\ $$$${g}\left({x}\right)={f}\left({x}\right)={x} \\ $$