Menu Close

f-x-0-and-lim-x-a-f-x-0-lim-x-a-g-x-then-lim-x-a-f-x-g-x-




Question Number 72905 by Tony Lin last updated on 04/Nov/19
f(x)≥0, and lim_(x→a) f(x)=0,lim_(x→a) g(x)=∞  then lim_(x→a) f(x)^(g(x)) =?
f(x)0,andlimxaf(x)=0,limxag(x)=thenlimxaf(x)g(x)=?
Commented by mathmax by abdo last updated on 04/Nov/19
we have by taylor f(x)=f(a)+(x−a)f^′ (a)+o(x−a)  ⇒f(x)∼(x−a)f^′ (a)  because lim_(x→a) f(x)=0  (we suppose f derivable at point a) ⇒  f(x)^(g(x)) ∼{(x−a)f^′ (a)}^(g(x))  =e^(g(x)ln{(x−a)f^′ (a)})   if lim_(x→a) g(x)=+∞  we have lim_(x→a^+ ) ln{(x−a)f^′ (a)}=−∞  ⇒  lim_(x→a^+ )   g(x)ln{(x−a)f^′ (a)}=−∞ ⇒  lim_(x→a^+ )    {f(x)}^(g(x)) =0  if lim_(x→a^+ )   g(x)=−∞   ⇒lim_(x→a^+ )   g(x)ln{(x−a)f^′ (a)}=+∞ ⇒  lim_(x→a^+ )    {f(x)}^(g(x))  =+∞  and if you have a clear answer post it..
wehavebytaylorf(x)=f(a)+(xa)f(a)+o(xa)f(x)(xa)f(a)becauselimxaf(x)=0(wesupposefderivableatpointa)f(x)g(x){(xa)f(a)}g(x)=eg(x)ln{(xa)f(a)}iflimxag(x)=+wehavelimxa+ln{(xa)f(a)}=limxa+g(x)ln{(xa)f(a)}=limxa+{f(x)}g(x)=0iflimxa+g(x)=limxa+g(x)ln{(xa)f(a)}=+limxa+{f(x)}g(x)=+andifyouhaveaclearanswerpostit..
Commented by Tony Lin last updated on 05/Nov/19
thanks sir
thankssir
Commented by mathmax by abdo last updated on 05/Nov/19
you are welcome.
youarewelcome.
Answered by mind is power last updated on 04/Nov/19
f(x)^(g(x)) =e^(g(x)ln(f(x)))   lim g(x)=+∞  lim[f(x)→0  ⇒lim ln(f(x))→−∞  ⇒g(x)ln(f)→−∞  ⇒e^(g(x)ln(f(x))) →0
f(x)g(x)=eg(x)ln(f(x))limg(x)=+lim[f(x)0limln(f(x))g(x)ln(f)eg(x)ln(f(x))0
Commented by Tony Lin last updated on 05/Nov/19
thanks sir
thankssir
Answered by Tony Lin last updated on 05/Nov/19
lim_(x→a) f(x)^(g(x)) =0
limxaf(x)g(x)=0

Leave a Reply

Your email address will not be published. Required fields are marked *