f-x-0-x-t-x-dt-x-gt-1-lim-x-1-f-x-f-x-1-f-x- Tinku Tara June 3, 2023 Others 0 Comments FacebookTweetPin Question Number 1594 by 123456 last updated on 24/Aug/15 f(x)=∫x0txdt,x>−1limx→−1+f(x)=?f(x+1)−f(x)=? Commented by 112358 last updated on 25/Aug/15 f(x)=∫0xtxdt=tx+1x+1∣0x=1x+1(xx+1−0x+1)f(x)=1x+1xx+1,x>−1f(x+1)−f(x)=1x+2(x+1)x+2−1x+1xx+1rhs=(x+1)2x+2(x+1)x−xx+1xx=x2+2x+1x+2(x+1)x−xx+1xx=x(x+2)+1x+2(x+1)x−xx+1xx=x[(x+1)x−xxx+1]+(x+1)xx+2=x[(x+1)x+1−xxx+1]+(x+1)xx+2=x{(x+1)x+1−xx}(x+2)+(x+1)x+1(x+1)(x+2)=x2(x+1)x+1+2x(x+1)x+1+(x+1)x+1−xx+2−2xx+1(x+1)(x+2)f(x+1)−f(x)=(x+1)x+3−xx+1(x+2)(x+1)(x+2)f(x)=11+xxx+1=x1+xxx=(1−1x+1)xxLetL=limx→−1+f(x)(ifthislimitexists)L=limx→−1+f(x)=limx→−1+[(1−1x+1)xx]L=[limx→−1+(1−1x+1)]×[limx→−1+xx]Letp=limx→−1+xxp=limx→−1+xx=limx→−1+elnxx=limx→−1+exlnxp=elimx→−1+xlnx=e(limx→−1+x)(limx→−1+lnx)p=e−1×ln(−1)=eln(−1)=eln1+iπp=eiπ=−1Letq=limx→−1+(1−1x+1)11+x=(1+x)−1⇒11+x=e−ln(x+1)∴q=lim1x→−1+−exp(−limx→−1+ln(x+1))Now,limx→−1+ln(x+1)=−∞∴q=1−exp(−1×−∞)=−∞∵L=p×q⇒L=−∞×−1=∞Ldoesnotexist.⇒limx→−1+f(x)doesnotexist Commented by Rasheed Soomro last updated on 24/Aug/15 Excelent! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Let-is-cube-root-of-unity-and-x-y-z-Z-If-x-y-z-0-prove-that-3-x-y-z-Show-by-an-example-that-the-converse-is-not-true-Next Next post: f-x-f-x-dx-ln-sec-x-c-f-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.