Menu Close

f-x-1-f-x-1-f-x-




Question Number 2071 by Rasheed Soomro last updated on 01/Nov/15
{ [f(x)]^(−1) }′ =[ f ′(x) ]^(−1)   f(x)=?
{[f(x)]1}=[f(x)]1f(x)=?
Commented by Yozzi last updated on 01/Nov/15
(d/dx)((1/(f(x))))=(1/(f^′ (x)))  ((f(x)×0−f^′ (x))/((f(x))^2 ))=(1/(f^′ (x)))  −(f^′ (x))^2 =(f(x))^2   (f(x))^2 +(f^′ (x))^2 =0  f(x)=±if^′ (x)  1=±((if^′ (x))/(f(x)))  ∫1dx=±i∫((f^′ (x))/(f(x)))dx  ±iln∣f(x)∣=x+c  ln∣f(x)∣=∓(i(x+c))  f(x)=e^(∓i(x+c))   f(x)=cos(x+c)+isin(x+c)  or  f(x)=cos(x+c)−isin(x+c)  f^′ (x)=ie^(i(x+c)) ⇒(1/(f^′ (x)))=−ie^(−i(x+c))   (1/(f(x)))=e^(−i(x+c)) ⇒(d/dx)((1/(f(x))))=−ie^(−i(x+c) =f^′ (x)
ddx(1f(x))=1f(x)f(x)×0f(x)(f(x))2=1f(x)(f(x))2=(f(x))2(f(x))2+(f(x))2=0f(x)=±if(x)1=±if(x)f(x)1dx=±if(x)f(x)dx±ilnf(x)∣=x+clnf(x)∣=(i(x+c))f(x)=ei(x+c)f(x)=cos(x+c)+isin(x+c)orf(x)=cos(x+c)isin(x+c)f(x)=iei(x+c)1f(x)=iei(x+c)1f(x)=ei(x+c)ddx(1f(x))=iei(x+c=f(x)
Commented by Rasheed Soomro last updated on 01/Nov/15
Like your approach!
Likeyourapproach!

Leave a Reply

Your email address will not be published. Required fields are marked *