Menu Close

f-x-1-x-3-4-1-7-find-f-1-x-




Question Number 12855 by kunalshukla95040 last updated on 04/May/17
f(x)=[1−(x−3)^4 ]^(1/7)   find f^(−1) (x).
$${f}\left({x}\right)=\left[\mathrm{1}−\left({x}−\mathrm{3}\right)^{\mathrm{4}} \right]^{\mathrm{1}/\mathrm{7}} \\ $$$${find}\:{f}^{−\mathrm{1}} \left({x}\right). \\ $$
Answered by linkelly0615 last updated on 04/May/17
f(x)=[1−(x−3)^4 ]^(1/7)   ⇒(f(x))^7 =1−(x−3)^4   ⇒1−(f(x))^7 =(x−3)^4   ⇒[1−(f(x))^7 ]^(1/4) =x−3  ⇒[1−(f(x))^7 ]^(1/4) +3=x  ∵f^(−1) (f(x))=x  ∴f^(−1) (x)=[1−x^7 ]^(1/4) +3
$${f}\left({x}\right)=\left[\mathrm{1}−\left({x}−\mathrm{3}\right)^{\mathrm{4}} \right]^{\mathrm{1}/\mathrm{7}} \\ $$$$\Rightarrow\left({f}\left({x}\right)\right)^{\mathrm{7}} =\mathrm{1}−\left({x}−\mathrm{3}\right)^{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{1}−\left({f}\left({x}\right)\right)^{\mathrm{7}} =\left({x}−\mathrm{3}\right)^{\mathrm{4}} \\ $$$$\Rightarrow\left[\mathrm{1}−\left({f}\left({x}\right)\right)^{\mathrm{7}} \right]^{\mathrm{1}/\mathrm{4}} ={x}−\mathrm{3} \\ $$$$\Rightarrow\left[\mathrm{1}−\left({f}\left({x}\right)\right)^{\mathrm{7}} \right]^{\mathrm{1}/\mathrm{4}} +\mathrm{3}={x} \\ $$$$\because{f}^{−\mathrm{1}} \left({f}\left({x}\right)\right)={x} \\ $$$$\therefore{f}^{−\mathrm{1}} \left({x}\right)=\left[\mathrm{1}−{x}^{\mathrm{7}} \right]^{\mathrm{1}/\mathrm{4}} +\mathrm{3} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *