f-x-1-x-x-6-1-27-f-x- Tinku Tara June 3, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 12386 by Joel576 last updated on 21/Apr/17 f(x+1x)=x6+127f(x)=? Answered by ajfour last updated on 21/Apr/17 let(x+1x)=tsince(x+1x)3=x3+1x3+3(x+1x)t3=x6+1x3+3t⇒(t3−3t)=(x6+1)(x6+1)−1⇒(t3−3t)2{(x6+1)−1}=(x6+1)2(x6+1)2−(t3−3t)2(x6+1)+(t3−3t)2=0(x6+1)=(t3−3t)2±(t3−3t)4−4(t3−3t)22f(t)=(x6+1)27=(t3−3t)2±(t3−3t)4−4(t3−3t)254f(x)=(x3−3x)254[1±1−4(x3−3x)2]. Commented by ajfour last updated on 21/Apr/17 forx=1f(1+1)=1+127=227. Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/Apr/17 x+x−1=t⇒x2−tx+1=0⇒x=t±t2−42x2=tx−1x3=tx2−x=t(tx−1)−x=(t2−1)x−tx4=(t2−1)x2−tx=(t2−1)(tx−1)−tx==(t2−2)tx−(t2−1)x6=x4×x2=[(t2−2)tx−(t2−1)](tx−1)==(t2−2)t2x2−(t2−2)tx−(t2−1)tx+(t2−1)==t2(t2−2)(tx−1)−[(t2−2+t2−1)]tx+(t2−1)=(t4−2t2−2t2+3)tx−(t4−2t2−t2+1)⇒x6=12t(t4−4t2+3)(t±t2−4)−(t4−3t2+1)x6+1=12t(t2−3)[(t2−1)(t±t2−4)−2t]f(x)=x(x2−3)54[(x2−1)(x±x2−4)−2x] Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 0-pi-e-2x-sin-x-dx-Next Next post: k-1-n-tan-kpi-2n-1-2n-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.