Menu Close

f-x-1-x-x-6-1-27-f-x-




Question Number 12386 by Joel576 last updated on 21/Apr/17
f(x + (1/x)) = ((x^6  + 1)/(27))  f(x) = ?
f(x+1x)=x6+127f(x)=?
Answered by ajfour last updated on 21/Apr/17
let  (x+(1/x))=t  since  (x+(1/x))^3 =x^3 +(1/x^3 )+3(x+(1/x))   t^3  = ((x^6 +1)/x^3 ) +3t  ⇒ (t^3 −3t) = (((x^6 +1))/( (√((x^6 +1)−1))))  ⇒(t^3 −3t)^2 {(x^6 +1)−1}= (x^6 +1)^2   (x^6 +1)^2 −(t^3 −3t)^2 (x^6 +1)+(t^3 −3t)^2 =0  (x^6 +1)= (((t^3 −3t)^2 ±(√((t^3 −3t)^4 −4(t^3 −3t)^2 )))/2)  f(t)=(((x^6 +1))/(27))=(((t^3 −3t)^2 ±(√((t^3 −3t)^4 −4(t^3 −3t)^2 )))/(54))  f(x)=(((x^3 −3x)^2 )/(54))[1±(√(1−(4/((x^3 −3x)^2 )))) ] .
let(x+1x)=tsince(x+1x)3=x3+1x3+3(x+1x)t3=x6+1x3+3t(t33t)=(x6+1)(x6+1)1(t33t)2{(x6+1)1}=(x6+1)2(x6+1)2(t33t)2(x6+1)+(t33t)2=0(x6+1)=(t33t)2±(t33t)44(t33t)22f(t)=(x6+1)27=(t33t)2±(t33t)44(t33t)254f(x)=(x33x)254[1±14(x33x)2].
Commented by ajfour last updated on 21/Apr/17
for x=1    f(1+1)=((1+1)/(27))= (2/(27)) .
forx=1f(1+1)=1+127=227.
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 21/Apr/17
x+x^(−1) =t⇒x^2 −tx+1=0⇒x=((t±(√(t^2 −4)))/2)  x^2 =tx−1  x^3 =tx^2 −x=t(tx−1)−x=(t^2 −1)x−t  x^4 =(t^2 −1)x^2 −tx=(t^2 −1)(tx−1)−tx=  =(t^2 −2)tx−(t^2 −1)  x^6 =x^4 ×x^2 =[(t^2 −2)tx−(t^2 −1)](tx−1)=  =(t^2 −2)t^2 x^2 −(t^2 −2)tx−(t^2 −1)tx+(t^2 −1)=  =t^2 (t^2 −2)(tx−1)−[(t^2 −2+t^2 −1)]tx+(t^2 −1)=  (t^4 −2t^2 −2t^2 +3)tx−(t^4 −2t^2 −t^2 +1)⇒  x^6 =(1/2)t(t^4 −4t^2 +3)(t±(√(t^2 −4)))−(t^4 −3t^2 +1)  x^6 +1=(1/2)t(t^2 −3)[(t^2 −1)(t±(√(t^2 −4)))−2t]  f(x)=((x(x^2 −3))/(54))[(x^2 −1)(x±(√(x^2 −4)))−2x]
x+x1=tx2tx+1=0x=t±t242x2=tx1x3=tx2x=t(tx1)x=(t21)xtx4=(t21)x2tx=(t21)(tx1)tx==(t22)tx(t21)x6=x4×x2=[(t22)tx(t21)](tx1)==(t22)t2x2(t22)tx(t21)tx+(t21)==t2(t22)(tx1)[(t22+t21)]tx+(t21)=(t42t22t2+3)tx(t42t2t2+1)x6=12t(t44t2+3)(t±t24)(t43t2+1)x6+1=12t(t23)[(t21)(t±t24)2t]f(x)=x(x23)54[(x21)(x±x24)2x]

Leave a Reply

Your email address will not be published. Required fields are marked *