Menu Close

f-x-2-f-1-x-1-x-64x-x-D-f-x-




Question Number 140470 by EDWIN88 last updated on 08/May/21
(f(x))^2 . f(((1−x)/(1+x))) = 64x , ∀x∈D  ⇒ f(x) =?
(f(x))2.f(1x1+x)=64x,xDf(x)=?
Answered by benjo_mathlover last updated on 08/May/21
(1) (f(x))^2 .f(((1−x)/(1+x))) = 64x  (2) replace x→((1−x)/(1+x))  ⇒(f(((1−x)/(1+x))))^2 .f(x)= ((64(1−x))/(1+x))  eq (1) ⇒squaring   ∵ (f(x))^4 . (f(((1−x)/(1+x))))^2  = (64x)^2   ⇒ (((f(x))^4 . (f(((1−x)/(1+x))))^2 )/(f(x). (f(((1−x)/(1+x))))^2 )) = ((64^2  x^2 (1+x))/(64(1−x)))  ⇒ (f(x))^3  = ((64x^2 (1+x))/(1−x))  ∴ ⇒f(x) = 4 (((x^3 +x^2 )/(1−x)))^(1/(3 ))
(1)(f(x))2.f(1x1+x)=64x(2)replacex1x1+x(f(1x1+x))2.f(x)=64(1x)1+xeq(1)squaring(f(x))4.(f(1x1+x))2=(64x)2(f(x))4.(f(1x1+x))2f(x).(f(1x1+x))2=642x2(1+x)64(1x)(f(x))3=64x2(1+x)1xf(x)=4x3+x21x3
Answered by mathmax by abdo last updated on 09/May/21
((1−x)/(1+x))=t ⇒1−x=t+tx ⇒(1+t)x=1−t ⇒x=((1−t)/(1+t)) ⇒  f^2 (((1−t)/(1+t))).f(t)=64.((1−t)/(1+t))  and f^2 (t).f(((1−t)/(1+t)))=64 t ⇒  f(((1−t)/(1+t)))=((64t)/(f^2 (t)))  ⇒ (((64t)/(f^2 (t))))^2 .f(t)=64((1−t)/(1+t)) ⇒  ((64t^2  )/(f^3 (t))) =((1−t)/(1+t)) ⇒((f^3 (t))/(64t^2 )) =((1+t)/(1−t)) ⇒f^3 (t)=64((t^2 +t^3 )/(1−t)) ⇒  f(t)=^3 (√(64.((t^2  +t^3 )/(1−t))))
1x1+x=t1x=t+tx(1+t)x=1tx=1t1+tf2(1t1+t).f(t)=64.1t1+tandf2(t).f(1t1+t)=64tf(1t1+t)=64tf2(t)(64tf2(t))2.f(t)=641t1+t64t2f3(t)=1t1+tf3(t)64t2=1+t1tf3(t)=64t2+t31tf(t)=364.t2+t31t

Leave a Reply

Your email address will not be published. Required fields are marked *