Menu Close

f-x-2x-3-x-4-show-that-f-x-0-has-roots-between-1-and-2-




Question Number 66149 by Rio Michael last updated on 09/Aug/19
f(x) =2x^3 −x−4   show that f(x) =0 has roots between  1 and 2
$${f}\left({x}\right)\:=\mathrm{2}{x}^{\mathrm{3}} −{x}−\mathrm{4}\: \\ $$$${show}\:{that}\:{f}\left({x}\right)\:=\mathrm{0}\:{has}\:{roots}\:{between} \\ $$$$\mathrm{1}\:{and}\:\mathrm{2} \\ $$
Answered by MJS last updated on 09/Aug/19
f(1)=−3<0  f(2)=10>0  and f(x) is continuous for x∈R  ⇒ there nust be at least one zero between  x=1 and x=2
$${f}\left(\mathrm{1}\right)=−\mathrm{3}<\mathrm{0} \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{10}>\mathrm{0} \\ $$$$\mathrm{and}\:{f}\left({x}\right)\:\mathrm{is}\:\mathrm{continuous}\:\mathrm{for}\:{x}\in\mathbb{R} \\ $$$$\Rightarrow\:\mathrm{there}\:\mathrm{nust}\:\mathrm{be}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{zero}\:\mathrm{between} \\ $$$${x}=\mathrm{1}\:\mathrm{and}\:{x}=\mathrm{2} \\ $$
Answered by mr W last updated on 09/Aug/19
f′(x)=6x^2 −1=0 ⇒x=±(1/( (√6)))  i.e. for x>(1/( (√6))) we have f′(x)>0 ⇒strictly increasing  f(1)=2−1−4=−3<0  f(2)=16−2−4=10>0  ⇒f(x)=0 has one and only one root  between 1 and 2.
$${f}'\left({x}\right)=\mathrm{6}{x}^{\mathrm{2}} −\mathrm{1}=\mathrm{0}\:\Rightarrow{x}=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}} \\ $$$${i}.{e}.\:{for}\:{x}>\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:{we}\:{have}\:{f}'\left({x}\right)>\mathrm{0}\:\Rightarrow{strictly}\:{increasing} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{2}−\mathrm{1}−\mathrm{4}=−\mathrm{3}<\mathrm{0} \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{16}−\mathrm{2}−\mathrm{4}=\mathrm{10}>\mathrm{0} \\ $$$$\Rightarrow{f}\left({x}\right)=\mathrm{0}\:{has}\:{one}\:{and}\:{only}\:{one}\:{root} \\ $$$${between}\:\mathrm{1}\:{and}\:\mathrm{2}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *