Menu Close

f-x-2x-3-x-4-show-that-the-equation-f-x-0-has-root-between-1-and-2-show-that-the-equation-f-x-0-can-be-written-as-x-2-x-1-2-use-the-iteration-x-n-1-2-x-n-1-2-




Question Number 66104 by Rio Michael last updated on 09/Aug/19
f(x)= 2x^3 −x−4  show that the equation f(x) =0 has root between 1 and 2  show that the equation f(x) =0 can be written as     x = (√(((2/x) +(1/2))))  use the iteration   x_(n+1 )  = (√(((2/x_n ) +(1/2)) ,))  with x_0  = 1.385 to find to 3 decimal places the value of x_1 .
f(x)=2x3x4showthattheequationf(x)=0hasrootbetween1and2showthattheequationf(x)=0canbewrittenasx=(2x+12)usetheiterationxn+1=(2xn+12),withx0=1.385tofindto3decimalplacesthevalueofx1.
Commented by mathmax by abdo last updated on 09/Aug/19
we have f(x) =2x^3 −x−4 ⇒f^′ (x)=6x^2 −1 =((√6)x−1)((√6)x+1)  f^′ (x)=0 ⇔x =+^− (1/( (√6)))   variation of f(x)  x         −∞                −(1/( (√6)))                   (1/( (√6)))                +∞  f^′ (x)                  +                       −                    +  f(x)         −∞     incr.  f(−(1/( (√6)))) decr f((1/( (√6))))    incr  +∞  f is increasing on [(1/( (√6))) ,+∞[  f(1) =2−1−4 =−5  f(2)=16−2−4 =10 ⇒f(1)f(2)<0 ⇒∃ α ∈]1,2[ /f(α)=0  x=(√((2/x)+(1/2)))and x>0 ⇒x^2 =((4+x)/(2x)) ⇒2x^3 =4+x ⇒2x^3 −x−4=0 ⇒  f(x)=0  so   f(x)=0 and x>0 ⇔x=(√((2/x)+(1/2)))  if we consider the iteration x_(n+1) =(√((2/x_n )+(1/2)))  we get x_1 =(√((2/x_0 )+(1/2)))=(√((4+x_0 )/(2x_0 )))=(√((4+1,385)/(2×1,385)))  rest to finish the calculus....
wehavef(x)=2x3x4f(x)=6x21=(6x1)(6x+1)f(x)=0x=+16variationoff(x)x1616+f(x)++f(x)incr.f(16)decrf(16)incr+fisincreasingon[16,+[f(1)=214=5f(2)=1624=10f(1)f(2)<0α]1,2[/f(α)=0x=2x+12andx>0x2=4+x2x2x3=4+x2x3x4=0f(x)=0sof(x)=0andx>0x=2x+12ifweconsidertheiterationxn+1=2xn+12wegetx1=2x0+12=4+x02x0=4+1,3852×1,385resttofinishthecalculus.

Leave a Reply

Your email address will not be published. Required fields are marked *