Menu Close

f-x-2x-3-x-4-show-that-the-equation-f-x-0-has-root-between-1-and-2-show-that-the-equation-f-x-0-can-be-written-as-x-2-x-1-2-use-the-iteration-x-n-1-2-x-n-1-2-




Question Number 66104 by Rio Michael last updated on 09/Aug/19
f(x)= 2x^3 −x−4  show that the equation f(x) =0 has root between 1 and 2  show that the equation f(x) =0 can be written as     x = (√(((2/x) +(1/2))))  use the iteration   x_(n+1 )  = (√(((2/x_n ) +(1/2)) ,))  with x_0  = 1.385 to find to 3 decimal places the value of x_1 .
$${f}\left({x}\right)=\:\mathrm{2}{x}^{\mathrm{3}} −{x}−\mathrm{4} \\ $$$${show}\:{that}\:{the}\:{equation}\:{f}\left({x}\right)\:=\mathrm{0}\:{has}\:{root}\:{between}\:\mathrm{1}\:{and}\:\mathrm{2} \\ $$$${show}\:{that}\:{the}\:{equation}\:{f}\left({x}\right)\:=\mathrm{0}\:{can}\:{be}\:{written}\:{as}\: \\ $$$$\:\:{x}\:=\:\sqrt{\left(\frac{\mathrm{2}}{{x}}\:+\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$${use}\:{the}\:{iteration} \\ $$$$\:{x}_{{n}+\mathrm{1}\:} \:=\:\sqrt{\left(\frac{\mathrm{2}}{{x}_{{n}} }\:+\frac{\mathrm{1}}{\mathrm{2}}\right)\:,} \\ $$$${with}\:{x}_{\mathrm{0}} \:=\:\mathrm{1}.\mathrm{385}\:{to}\:{find}\:{to}\:\mathrm{3}\:{decimal}\:{places}\:{the}\:{value}\:{of}\:{x}_{\mathrm{1}} . \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 09/Aug/19
we have f(x) =2x^3 −x−4 ⇒f^′ (x)=6x^2 −1 =((√6)x−1)((√6)x+1)  f^′ (x)=0 ⇔x =+^− (1/( (√6)))   variation of f(x)  x         −∞                −(1/( (√6)))                   (1/( (√6)))                +∞  f^′ (x)                  +                       −                    +  f(x)         −∞     incr.  f(−(1/( (√6)))) decr f((1/( (√6))))    incr  +∞  f is increasing on [(1/( (√6))) ,+∞[  f(1) =2−1−4 =−5  f(2)=16−2−4 =10 ⇒f(1)f(2)<0 ⇒∃ α ∈]1,2[ /f(α)=0  x=(√((2/x)+(1/2)))and x>0 ⇒x^2 =((4+x)/(2x)) ⇒2x^3 =4+x ⇒2x^3 −x−4=0 ⇒  f(x)=0  so   f(x)=0 and x>0 ⇔x=(√((2/x)+(1/2)))  if we consider the iteration x_(n+1) =(√((2/x_n )+(1/2)))  we get x_1 =(√((2/x_0 )+(1/2)))=(√((4+x_0 )/(2x_0 )))=(√((4+1,385)/(2×1,385)))  rest to finish the calculus....
$${we}\:{have}\:{f}\left({x}\right)\:=\mathrm{2}{x}^{\mathrm{3}} −{x}−\mathrm{4}\:\Rightarrow{f}^{'} \left({x}\right)=\mathrm{6}{x}^{\mathrm{2}} −\mathrm{1}\:=\left(\sqrt{\mathrm{6}}{x}−\mathrm{1}\right)\left(\sqrt{\mathrm{6}}{x}+\mathrm{1}\right) \\ $$$${f}^{'} \left({x}\right)=\mathrm{0}\:\Leftrightarrow{x}\:=\overset{−} {+}\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:\:\:{variation}\:{of}\:{f}\left({x}\right) \\ $$$${x}\:\:\:\:\:\:\:\:\:−\infty\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${f}^{'} \left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+ \\ $$$${f}\left({x}\right)\:\:\:\:\:\:\:\:\:−\infty\:\:\:\:\:{incr}.\:\:{f}\left(−\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\right)\:{decr}\:{f}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\right)\:\:\:\:{incr}\:\:+\infty \\ $$$${f}\:{is}\:{increasing}\:{on}\:\left[\frac{\mathrm{1}}{\:\sqrt{\mathrm{6}}}\:,+\infty\left[\right.\right. \\ $$$${f}\left(\mathrm{1}\right)\:=\mathrm{2}−\mathrm{1}−\mathrm{4}\:=−\mathrm{5} \\ $$$$\left.{f}\left(\mathrm{2}\right)=\mathrm{16}−\mathrm{2}−\mathrm{4}\:=\mathrm{10}\:\Rightarrow{f}\left(\mathrm{1}\right){f}\left(\mathrm{2}\right)<\mathrm{0}\:\Rightarrow\exists\:\alpha\:\in\right]\mathrm{1},\mathrm{2}\left[\:/{f}\left(\alpha\right)=\mathrm{0}\right. \\ $$$${x}=\sqrt{\frac{\mathrm{2}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}}}{and}\:{x}>\mathrm{0}\:\Rightarrow{x}^{\mathrm{2}} =\frac{\mathrm{4}+{x}}{\mathrm{2}{x}}\:\Rightarrow\mathrm{2}{x}^{\mathrm{3}} =\mathrm{4}+{x}\:\Rightarrow\mathrm{2}{x}^{\mathrm{3}} −{x}−\mathrm{4}=\mathrm{0}\:\Rightarrow \\ $$$${f}\left({x}\right)=\mathrm{0}\:\:{so}\:\:\:{f}\left({x}\right)=\mathrm{0}\:{and}\:{x}>\mathrm{0}\:\Leftrightarrow{x}=\sqrt{\frac{\mathrm{2}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${if}\:{we}\:{consider}\:{the}\:{iteration}\:{x}_{{n}+\mathrm{1}} =\sqrt{\frac{\mathrm{2}}{{x}_{{n}} }+\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${we}\:{get}\:{x}_{\mathrm{1}} =\sqrt{\frac{\mathrm{2}}{{x}_{\mathrm{0}} }+\frac{\mathrm{1}}{\mathrm{2}}}=\sqrt{\frac{\mathrm{4}+{x}_{\mathrm{0}} }{\mathrm{2}{x}_{\mathrm{0}} }}=\sqrt{\frac{\mathrm{4}+\mathrm{1},\mathrm{385}}{\mathrm{2}×\mathrm{1},\mathrm{385}}} \\ $$$${rest}\:{to}\:{finish}\:{the}\:{calculus}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *