Menu Close

f-x-3-x-gt-2-2x-x-2-f-2-1-ise-f-1-f-3-czm-f-x-3x-c-2-x-gt-2-x-2-c-1-x-2-f-2-x-2-c-1-dir-1-4-c-1-gt-c-1-3-1-2-3-c-2-gt-c-2-5-f-x-3x-5-x-gt-2




Question Number 11899 by ahmet last updated on 04/Apr/17
f′(x)={_(3     ;x>2) ^(2x  ; x≤2)   f(2)=1 ise f(1)+f(3)=?  czm∵ f(x)={_(3x+c_2  ; x>2) ^(x^2 +c_1  ;x≤2)   f(2)=x^2 +c_1  dir  1=4+c_1  => c_1 =−3  1=2.3+c_2  => c_2 =−5  f(x)={_(3x−5    x>2) ^(x^2 −3   ;x≤2)   f(1)=1^2 −3=−2, f(3)=3.3−5=4  f(1)+f(3)=−2+4=2
$${f}'\left({x}\right)=\left\{_{\mathrm{3}\:\:\:\:\:;{x}>\mathrm{2}} ^{\mathrm{2}{x}\:\:;\:{x}\leqslant\mathrm{2}} \right. \\ $$$${f}\left(\mathrm{2}\right)=\mathrm{1}\:{ise}\:{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{3}\right)=? \\ $$$${czm}\because\:{f}\left({x}\right)=\left\{_{\mathrm{3}{x}+{c}_{\mathrm{2}} \:;\:{x}>\mathrm{2}} ^{{x}^{\mathrm{2}} +{c}_{\mathrm{1}} \:;{x}\leqslant\mathrm{2}} \right. \\ $$$${f}\left(\mathrm{2}\right)={x}^{\mathrm{2}} +{c}_{\mathrm{1}} \:{dir} \\ $$$$\mathrm{1}=\mathrm{4}+{c}_{\mathrm{1}} \:=>\:{c}_{\mathrm{1}} =−\mathrm{3} \\ $$$$\mathrm{1}=\mathrm{2}.\mathrm{3}+{c}_{\mathrm{2}} \:=>\:{c}_{\mathrm{2}} =−\mathrm{5} \\ $$$${f}\left({x}\right)=\left\{_{\mathrm{3}{x}−\mathrm{5}\:\:\:\:{x}>\mathrm{2}} ^{{x}^{\mathrm{2}} −\mathrm{3}\:\:\:;{x}\leqslant\mathrm{2}} \right. \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1}^{\mathrm{2}} −\mathrm{3}=−\mathrm{2},\:{f}\left(\mathrm{3}\right)=\mathrm{3}.\mathrm{3}−\mathrm{5}=\mathrm{4} \\ $$$${f}\left(\mathrm{1}\right)+{f}\left(\mathrm{3}\right)=−\mathrm{2}+\mathrm{4}=\mathrm{2} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *