Menu Close

f-x-e-x-g-x-ln-x-h-x-x-A-line-L-is-perpendicular-to-h-x-at-point-P-x-y-and-extends-and-disects-f-x-and-g-x-The-length-of-L-between-f-x-and-g-x-is-r-When-is-r-minimum-




Question Number 5692 by FilupSmith last updated on 24/May/16
f(x)=e^x   g(x)=ln x  h(x)=x    A line L is perpendicular to h(x) at point  P(x,y) and extends and disects f(x) and g(x).  The length of L between f(x) and g(x)  is r. When is r minimum?
f(x)=exg(x)=lnxh(x)=xAlineLisperpendiculartoh(x)atpointP(x,y)andextendsanddisectsf(x)andg(x).ThelengthofLbetweenf(x)andg(x)isr.Whenisrminimum?
Commented by FilupSmith last updated on 24/May/16
Commented by Yozzii last updated on 25/May/16
(1) y=e^x ,(2) y=x  (x∈R)  The perpendicular distance between  (1) and (2) is needed. The points of  interection can be found using the  line y=c−x which is normal to (2)  but has an unknown y−intercept.    For (2) meeting y=c−x  c−x=x⇒x=0.5c⇒(0.5c,0.5c)  For (1) meeting y=c−x  c−x=e^x ⇒(c−W(e^c ),W(e^c ))  I used Wolfram Alpha to tell me  about the properties of the product−log  function W(x). The calculation that  follows finds half the value of r.    Using l=(√((x_2 −x_1 )^2 +(y_2 −y_1 )^2 ))   (l=0.5r)  ⇒l^2 =(W(e^c )−0.5c)^2 +(W(e^c )−0.5c)^2   l=(√2)(W(e^c )−0.5c)    (dl/dc)=(√2)(((dW(e^c ))/dc)−0.5)  ((dW(e^c ))/dc)=((dW(u))/du)×(du/dc)=((W(u)e^c )/(u(1+W(u))))=((W(e^c ))/(W(e^c )+1))  (chain rule)  (dl/dc)=(√2)(((W(e^c )e^c )/(e^u (1+W(e^c ))))−0.5)  (dl/dc)=(√2)(((0.5(W(e^c )−1))/(1+W(e^c ))))  (dl/dc)=((√2)/2)(((W(e^c )−1)/(W(e^c )+1)))    At stationary value of l, (dl/dc)=0.  ⇒W(e^c )=1  ∴ W(e^c )=1⇒e^c =e⇒c=1  (d^2 l/dc^2 )=((√2)/2)((((W(e^c )+1)(((W(e^c ))/(1+W(e^c ))))−(W(e^c )−1)((W(e^c ))/(1+W(e^c ))))/((1+W(e^c ))^2 )))  (d^2 l/dc^2 )=((W(e^c )(√2))/((1+W(e^c ))^3 ))  Since W(e^c )=W(e^1 )=1⇒(d^2 l/dc^2 )=((√2)/8)>0⇒minimum at c=1.  ∴min(l)=(√2)(1−0.5)=((√2)/2)  The required distance is 2min(l)=(√2)  since y=x is the reflection line.
(1)y=ex,(2)y=x(xR)Theperpendiculardistancebetween(1)and(2)isneeded.Thepointsofinterectioncanbefoundusingtheliney=cxwhichisnormalto(2)buthasanunknownyintercept.For(2)meetingy=cxcx=xx=0.5c(0.5c,0.5c)For(1)meetingy=cxcx=ex(cW(ec),W(ec))IusedWolframAlphatotellmeaboutthepropertiesoftheproductlogfunctionW(x).Thecalculationthatfollowsfindshalfthevalueofr.Usingl=(x2x1)2+(y2y1)2(l=0.5r)l2=(W(ec)0.5c)2+(W(ec)0.5c)2l=2(W(ec)0.5c)dldc=2(dW(ec)dc0.5)dW(ec)dc=dW(u)du×dudc=W(u)ecu(1+W(u))=W(ec)W(ec)+1(chainrule)dldc=2(W(ec)eceu(1+W(ec))0.5)dldc=2(0.5(W(ec)1)1+W(ec))dldc=22(W(ec)1W(ec)+1)Atstationaryvalueofl,dldc=0.W(ec)=1W(ec)=1ec=ec=1d2ldc2=22((W(ec)+1)(W(ec)1+W(ec))(W(ec)1)W(ec)1+W(ec)(1+W(ec))2)d2ldc2=W(ec)2(1+W(ec))3SinceW(ec)=W(e1)=1d2ldc2=28>0minimumatc=1.min(l)=2(10.5)=22Therequireddistanceis2min(l)=2sincey=xisthereflectionline.

Leave a Reply

Your email address will not be published. Required fields are marked *