Menu Close

f-x-f-x-dx-ln-sec-x-c-f-x-




Question Number 1597 by Rasheed Ahmad last updated on 25/Aug/15
∫((f(x))/(f ′(x)))dx=ln sec x+c  f(x)=?
f(x)f(x)dx=lnsecx+cf(x)=?
Answered by 123456 last updated on 25/Aug/15
∫(y/(dy/dx))dx=ln sec x+c  (d/dx)[∫(y/(dy/dx))dx]=(d/dx)[ln sec x+c]  (y/(dy/dx))=((sec x tan x)/(sec x))=tan x  y=(dy/dx)tan x  (dy/y)=(dx/(tan x))  ∫(dy/y)=∫cot xdx  ln y=∫cot xdx=ln sin x+g  y=e^(ln sin x+g) =e^(ln sin x) e^g   y=ksin x,k=e^g   −−−−−−−−−−−−−−−−−−−−  verification  y=ksin x  dy/dx=kcos x  ∫(y/(dy/dx))dx=∫((ksin x)/(kcos x))dx                        =∫((sin x)/(cos x))dx,u=cos x,du=−sin xdx                        =−∫(du/u)                        =−ln u+C                        =−ln cos x+C                        =ln (cos x)^(−1) +C=ln (1/(cos x))+C                        =ln sec x+C
ydy/dxdx=lnsecx+cddx[ydy/dxdx]=ddx[lnsecx+c]ydy/dx=secxtanxsecx=tanxy=dydxtanxdyy=dxtanxdyy=cotxdxlny=cotxdx=lnsinx+gy=elnsinx+g=elnsinxegy=ksinx,k=egverificationy=ksinxdy/dx=kcosxydy/dxdx=ksinxkcosxdx=sinxcosxdx,u=cosx,du=sinxdx=duu=lnu+C=lncosx+C=ln(cosx)1+C=ln1cosx+C=lnsecx+C
Commented by 123456 last updated on 25/Aug/15
((d(sec x))/dx)=(d/dx)((1/(cos x)))                   =−(((d(cos x))/dx)/(cos^2 x))                   =((sin x)/(cos x))∙(1/(cos x))=tan x sec x  (d/dx)ln u=((du/dx)/u)  ∫cot xdx=∫((cos x)/(sin x))dx=∫(du/u)=ln u+C=ln sin x+C  u=sin x,du=cos xdx
d(secx)dx=ddx(1cosx)=d(cosx)dxcos2x=sinxcosx1cosx=tanxsecxddxlnu=du/dxucotxdx=cosxsinxdx=duu=lnu+C=lnsinx+Cu=sinx,du=cosxdx
Commented by Rasheed Ahmad last updated on 25/Aug/15
Excellent!
Excellent!

Leave a Reply

Your email address will not be published. Required fields are marked *