Menu Close

f-x-is-a-polynomial-such-that-f-x-2-f-x-f-x-1-Find-f-x-such-that-f-x-0-




Question Number 830 by prakash jain last updated on 20/Mar/15
f(x) is a polynomial such that  f(x^2 )=f(x)f(x−1)  Find f(x) such that f(x)≠0.
f(x)isapolynomialsuchthatf(x2)=f(x)f(x1)Findf(x)suchthatf(x)0.
Commented by 123456 last updated on 23/Mar/15
f(x)=Σ_(i=0) ^n a_i x^i   f(x^2 )=Σ_(i=0) ^n a_i x^(2i) ≡Σ_(i=0) ^(2n) b_i x^i   f(x−1)=Σ_(i=0) ^n a_i (x−1)^i =Σ_(i=0) ^n c_i x^i   f(x)f(x−1)=Σ_(i=0) ^n a_i x^i Σ_(i=0) ^n c_i x^i =Σ_(i=0) ^(2n) d_i x^i   b_i = { (a_(i/2) ,(i≡0(mod 2))),(0,(i≡1(mod 2))) :}  (x−1)^i =Σ_(j=0) ^i  ((i),(j) ) x^j (−1)^(i−j)   Σ_(i=0) ^n a_i (x−1)^i =Σ_(i=0) ^n a_i Σ_(j=0) ^i  ((i),(j) ) x^j (−1)^(i−j) =Σ_(i=0) ^n c_i x^i   c_i =^? Σ_(j=i) ^n  ((j),(i) )(−1)^(j−i) a_j   d_i =Σ_(j=0) ^i a_j c_(i−j)   d_i =b_i
f(x)=ni=0aixif(x2)=ni=0aix2i2ni=0bixif(x1)=ni=0ai(x1)i=ni=0cixif(x)f(x1)=ni=0aixini=0cixi=2ni=0dixibi={ai/2i0(mod2)0i1(mod2)(x1)i=ij=0(ij)xj(1)ijni=0ai(x1)i=ni=0aiij=0(ij)xj(1)ij=ni=0cixici=?nj=i(ji)(1)jiajdi=ij=0ajcijdi=bi
Commented by 123456 last updated on 23/Mar/15
f(x)=ax+b  f(x−1)=a(x−1)+b=ax+(b−a)  f(x^2 )=ax^2 +b  ax^2 +b=a^2 x^2 +a(2b−a)x+b(b−a)   { ((a=a^2 ),(a=0∨a=1)),((0=a(2b−a)),(a=0∨2b=a)),((b=(b−a)b),(b=0∨b−a=1)) :}  a=0⇒ { ((0=0),),((0=0),),((b=b^2 ),(b=0∨b=1)) :}  a=1⇒ { ((1=1),),((0=2b−1),(b=(1/2))),((b=(b−1)b),(b=0∨b=2)) :}  a=2b⇒ { ((2b=4b^2 ),(b=0∨b=(1/2))),((0=0),),((b=−b^2 ),(b=0∨b=−1)) :}  a=b−1⇒ { ((b−1=(b−1)^2 ),(b=1∨b=2)),((0=(b−1)(b+1)),(b=−1∨b=1)),((b=b),) :}  f(x)=0∨f(x)=1
f(x)=ax+bf(x1)=a(x1)+b=ax+(ba)f(x2)=ax2+bax2+b=a2x2+a(2ba)x+b(ba){a=a2a=0a=10=a(2ba)a=02b=ab=(ba)bb=0ba=1a=0{0=00=0b=b2b=0b=1a=1{1=10=2b1b=12b=(b1)bb=0b=2a=2b{2b=4b2b=0b=120=0b=b2b=0b=1a=b1{b1=(b1)2b=1b=20=(b1)(b+1)b=1b=1b=bf(x)=0f(x)=1
Commented by 123456 last updated on 23/Mar/15
f(x)=ax^2 +bx+c  f(x−1)=a(x−1)^2 +b(x−1)+c                  =ax^2 +(b−2a)x+(a−b+c)  f(x^2 )=ax^4 +bx^2 +c   { ((a=a^2 )),((0=2a(b−a))),((b=2ac+b^2 −3ab+a^2 )),((0=2(b−a)c−b^2 +ab)),((c=c(a+c−b))) :}  f(x)=0∨f(x)=1∨f(x)=x^2 +x+1
f(x)=ax2+bx+cf(x1)=a(x1)2+b(x1)+c=ax2+(b2a)x+(ab+c)f(x2)=ax4+bx2+c{a=a20=2a(ba)b=2ac+b23ab+a20=2(ba)cb2+abc=c(a+cb)f(x)=0f(x)=1f(x)=x2+x+1
Commented by 123456 last updated on 23/Mar/15
suppose that f_1 (x) is a solution and  f(x)=f_1 (x)+f_2 (x) is also a solution  f(x^2 )=f(x)f(x−1)  f_1 (x^2 )+f_2 (x^2 )=[f_1 (x)+f_2 (x)][f_1 (x−1)+f_2 (x−1)]  =f_1 (x)f_1 (x−1)+f_1 (x)f_2 (x−1)+f_2 (x)f_1 (x−1)+f_2 (x)f_2 (x−1)  f_2 (x^2 )=f_1 (x)f_2 (x−1)+f_2 (x)f_1 (x−1)+f_2 (x)f_2 (x−1)  f_1 (x)=0⇒f_2 (x^2 )=f_2 (x)f_2 (x−1)  f_1 (x)=1⇒f_2 (x^2 )=f_2 (x−1)+f_2 (x)+f_2 (x−1)f_2 (x−1)
supposethatf1(x)isasolutionandf(x)=f1(x)+f2(x)isalsoasolutionf(x2)=f(x)f(x1)f1(x2)+f2(x2)=[f1(x)+f2(x)][f1(x1)+f2(x1)]=f1(x)f1(x1)+f1(x)f2(x1)+f2(x)f1(x1)+f2(x)f2(x1)f2(x2)=f1(x)f2(x1)+f2(x)f1(x1)+f2(x)f2(x1)f1(x)=0f2(x2)=f2(x)f2(x1)f1(x)=1f2(x2)=f2(x1)+f2(x)+f2(x1)f2(x1)
Commented by prakash jain last updated on 23/Mar/15
Thanks. Then we can generalize the solution to  f(x)=(x^2 +x+1)^n  where n∈N  Since raising to any power won′t make  any difference in equality.
Thanks.Thenwecangeneralizethesolutiontof(x)=(x2+x+1)nwherenNSinceraisingtoanypowerwontmakeanydifferenceinequality.
Commented by prakash jain last updated on 23/Mar/15
x^4 +x^2 +1=(x^2 +x+1)(x^2 −2x+1+x−1+1)  =(x^2 +x+1)(x^2 −x+1)
x4+x2+1=(x2+x+1)(x22x+1+x1+1)=(x2+x+1)(x2x+1)

Leave a Reply

Your email address will not be published. Required fields are marked *