Menu Close

f-x-ln-1-ln-x-f-x-ln-f-x-Find-x-




Question Number 143293 by Huy last updated on 12/Jun/21
f(x)=ln(1+ln(x)).  f(x)=ln(f′(x)).Find x
f(x)=ln(1+ln(x)).f(x)=ln(f(x)).Findx
Answered by Olaf_Thorendsen last updated on 12/Jun/21
f(x) = ln(1+lnx)  f′(x) = ((1/x)/(1+lnx))  f(x) = ln(f′(x))  ln(1+lnx) = ln((1/(x(1+lnx))))  1+lnx = (1/(x(1+lnx)))  x(1+lnx)^2  = 1  x = 1 is an evident solution
f(x)=ln(1+lnx)f(x)=1x1+lnxf(x)=ln(f(x))ln(1+lnx)=ln(1x(1+lnx))1+lnx=1x(1+lnx)x(1+lnx)2=1x=1isanevidentsolution
Answered by mathmax by abdo last updated on 12/Jun/21
f(x)=log(1+logx)  we have 1+logx>0 ⇒logx>−1 ⇒x>e^(−1)   f is defined on]e^(−1)  ,+∞[  f(x)=log(f^′ (x)) ⇒log(1+logx)=log((1/(x(1+logx)))) ⇒  1+logx=(1/(x(1+logx))) ⇒x(1+logx)^2 =1 ⇒  x(1+2logx +log^2 x)−1=0 ⇒xlog^2 x+2xlogx+x−1=0=Ψ(x)  Ψ(x)=xlog^2 x+2xlogx+x−1 ⇒  Ψ^′ (x)=log^2 x+2logx +2logx +2+1 =log^2 x+4logx +3  =u^2  +4u+3 (u=logx)  Δ^′  =2^2 −3=1 ⇒logx=−2+1 or logx=−2−1 ⇒x=e^(−1)  or x=e^(−3)   x             e^(−3)               e^(−1)                      +∞  Ψ^′            0      −         0             +  Ψ                   decr                  incr          +∞  Ψ is decreazing onI=](1/e^3 ),(1/e)[  ⇒∃!x_0 ∈I /Ψ(x_0 )=0  Ψ is increazing  onJ=](1/e),+∞[ ⇒∃!y_0 ∈ J / Ψ(y_0 )=0  we see that Ψ(1)=0 ⇒y_0 =1  we can determine x_0 by newton method...
f(x)=log(1+logx)wehave1+logx>0logx>1x>e1fisdefinedon]e1,+[f(x)=log(f(x))log(1+logx)=log(1x(1+logx))1+logx=1x(1+logx)x(1+logx)2=1x(1+2logx+log2x)1=0xlog2x+2xlogx+x1=0=Ψ(x)Ψ(x)=xlog2x+2xlogx+x1Ψ(x)=log2x+2logx+2logx+2+1=log2x+4logx+3=u2+4u+3(u=logx)Δ=223=1logx=2+1orlogx=21x=e1orx=e3xe3e1+Ψ00+Ψdecrincr+ΨisdecreazingonI=]1e3,1e[!x0I/Ψ(x0)=0ΨisincreazingonJ=]1e,+[!y0J/Ψ(y0)=0weseethatΨ(1)=0y0=1wecandeterminex0bynewtonmethod

Leave a Reply

Your email address will not be published. Required fields are marked *